Skip to main content
Log in

Potential Role of Akkermansia muciniphila in Parkinson’s Disease and Other Neurological/Autoimmune Diseases

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

The composition of the gut microbiota, including Akkermansia muciniphila (A. muciniphila), is altered in many neurological diseases and may be involved in the pathophysiological processes of Parkinson’s disease (PD). A. muciniphila, a mucin-degrading bacterium, is a potential next-generation microbe that has anti-inflammatory properties and is responsible for keeping the body healthy. As the role of A. muciniphila in PD has become increasingly apparent, we discuss the potential link between A. muciniphila and various neurological diseases (including PD) in the current review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Travagli RA, Browning KN, Camilleri M. Parkinson disease and the gut: new insights into pathogenesis and clinical relevance. Nat Rev Gastroenterol Hepatol, 2020,17(11):673–685

    Article  CAS  PubMed  Google Scholar 

  2. Fang P, Kazmi SA, Jameson KG, et al. The Microbiome as a Modifier of Neurodegenerative Disease Risk. Cell Host Microbe, 2020,28(2):201–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fang X. Potential role of gut microbiota and tissue barriers in Parkinson’s disease and amyotrophic lateral sclerosis. Int J Neurosci, 2016,126(9):771–776

    Article  CAS  PubMed  Google Scholar 

  4. Sundman MH, Chen NK, Subbian V, et al. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun, 2017,66:31–44

    Article  CAS  PubMed  Google Scholar 

  5. Perez-Pardo P, Dodiya HB, Broersen LM, et al. Gut-brain and brain-gut axis in Parkinson’s disease models: Effects of a uridine and fish oil diet. Nutr Neurosci, 2018,21(6):391–402

    Article  CAS  PubMed  Google Scholar 

  6. Sampson TR, Debelius JW, Thron T, et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell, 2016,167(6):1469–1480.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Derrien M, Vaughan EE, Plugge CM, et al. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol, 2004,54(Pt 5):1469–1476

    Article  CAS  PubMed  Google Scholar 

  8. O’Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol, 2017,2:17057

    Article  CAS  PubMed  Google Scholar 

  9. Zhai R, Xue X, Zhang L, et al. Strain-Specific Anti-inflammatory Properties of Two Akkermansia muciniphila Strains on Chronic Colitis in Mice. Front Cell Infect Microbiol, 2019,9:239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li J, Lin S, Vanhoutte PM, et al. Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/- Mice. Circulation, 2016,133(24):2434–2446

    Article  CAS  PubMed  Google Scholar 

  11. Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med, 2019,25(7):1096–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 2014,63(5):727–735

    Article  CAS  PubMed  Google Scholar 

  13. Barcena C, Valdes-Mas R, Mayoral P, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med, 2019, 25(8):1234–1242

    Article  CAS  PubMed  Google Scholar 

  14. Heinzel S, Aho VTE, Suenkel U, et al. Gut Microbiome Signatures of Risk and Prodromal Markers of Parkinson Disease. Ann Neurol, 2020,88(2):320–331

    Article  PubMed  Google Scholar 

  15. Keshavarzian A, Green SJ, Engen PA, et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord, 2015,30(10):1351–1360

    Article  CAS  PubMed  Google Scholar 

  16. Hill-Burns EM, Debelius JW, Morton JT, et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord, 2017,32(5):739–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heintz-Buschart A, Pandey U, Wicke T, et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord, 2018,33(1):88–98

    Article  CAS  PubMed  Google Scholar 

  18. Nishiwaki H, Ito M, Ishida T, et al. Meta-Analysis of Gut Dysbiosis in Parkinson’s Disease. Mov Disord, 2020,35(9):1626–1635

    Article  CAS  PubMed  Google Scholar 

  19. Cirstea MS, Yu AC, Golz E, et al. Microbiota Composition and Metabolism Are Associated With Gut Function in Parkinson’s Disease. Mov Disord, 2020, 35(7):1208–1217

    Article  CAS  PubMed  Google Scholar 

  20. Bedarf JR, Hildebrand F, Coelho LP, et al. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naive Parkinson’s disease patients. Genome Med, 2017,9(1):39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Unger MM, Spiegel J, Dillmann KU, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord, 2016,32:66–72

    Article  PubMed  Google Scholar 

  22. Hertel J, Harms AC, Heinken A, et al. Integrated Analyses of Microbiome and Longitudinal Metabolome Data Reveal Microbial-Host Interactions on Sulfur Metabolism in Parkinson’s Disease. Cell Rep, 2019,29(7):1767–1777.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vandeputte D, Kathagen G, D’Hoe K, et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature, 2017,551(7681):507–511

    Article  CAS  PubMed  Google Scholar 

  24. Tettamanti Boshier FA, Srinivasan S, Lopez A, et al. Complementing 16S rRNA Gene Amplicon Sequencing with Total Bacterial Load To Infer Absolute Species Concentrations in the Vaginal Microbiome. mSystems, 2020,5(2):e00777–19

    Article  PubMed  PubMed Central  Google Scholar 

  25. Miller PG, Bonn MB, Franklin CL, et al. TNFR2 Deficiency Acts in Concert with Gut Microbiota To Precipitate Spontaneous Sex-Biased Central Nervous System Demyelinating Autoimmune Disease. J Immunol, 2015,195(10):4668–4684

    Article  CAS  PubMed  Google Scholar 

  26. Cekanaviciute E, Yoo BB, Runia TF, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA, 2017,114(40):10 713–10 718

    Article  CAS  Google Scholar 

  27. Cekanaviciute E, Probstel AK, Thomann A, et al. Multiple Sclerosis-Associated Changes in the Composition and Immune Functions of Spore-Forming Bacteria. mSystems, 2018,3(6):e00083–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu S, Rezende RM, Moreira TG, et al. Oral Administration of miR-30d from Feces of MS Patients Suppresses MS-like Symptoms in Mice by Expanding Akkermansia muciniphila. Cell Host Microbe, 2019,26(6):779–794.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hogg E, Athreya K, Basile C, et al. High Prevalence of Undiagnosed Insulin Resistance in Non-Diabetic Subjects with Parkinson’s Disease. J Parkinsons Dis, 2018,8(2):259–265

    Article  CAS  PubMed  Google Scholar 

  30. Nam GE, Kim SM, Han K, et al. Metabolic syndrome and risk of Parkinson disease: A nationwide cohort study. PLoS Med, 2018,15(8):e1002640

    Article  PubMed  PubMed Central  Google Scholar 

  31. De Pablo-Fernandez E, Goldacre R, Pakpoor J, et al. Association between diabetes and subsequent Parkinson disease: A record-linkage cohort study. Neurology, 2018,91(2):e139–e142

    Article  PubMed  Google Scholar 

  32. Charvin D, Medori R, Hauser RA, et al. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat Rev Drug Discov, 2018,17(11):804–822

    Article  CAS  PubMed  Google Scholar 

  33. Bosco D, Plastino M, Cristiano D, et al. Dementia is associated with insulin resistance in patients with Parkinson’s disease. J Neurol Sci, 2012,315(1–2):39–43

    Article  CAS  PubMed  Google Scholar 

  34. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006,444(7121):840–846

    Article  CAS  PubMed  Google Scholar 

  35. Schnurr TM, Jakupovic H, Carrasquilla GD, et al. Obesity, unfavourable lifestyle and genetic risk of type 2 diabetes: a case-cohort study. Diabetologia, 2020,63(7):1324–1332

    Article  CAS  PubMed  Google Scholar 

  36. Sanna S, van Zuydam NR, Mahajan A, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet, 2019,51(4):600–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 2010,5(2):e9085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aron-Wisnewsky J, Prifti E, Belda E, et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut, 2019,68(1):70–82

    Article  CAS  PubMed  Google Scholar 

  39. Cani PD, de Vos WM. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Front Microbiol, 2017,8:1765

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dao MC, Belda E, Prifti E, et al. Akkermansia muciniphila abundance is lower in severe obesity, but its increased level after bariatric surgery is not associated with metabolic health improvement. Am J Physiol Endocrinol Metab, 2019,317(3):E446–E459

    Article  CAS  PubMed  Google Scholar 

  41. Giannoudaki E, Hernandez-Santana YE, Mulfaul K, et al. Interleukin-36 cytokines alter the intestinal microbiome and can protect against obesity and metabolic dysfunction. Nat Commun, 2019,10(1):4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2016,65(3):426–436

    Article  CAS  PubMed  Google Scholar 

  43. Schneeberger M, Everard A, Gomez-Valades AG, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep, 2015,5:16643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA, 2013,110(22):9066–9071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Depommier C, Van Hul M, Everard A, et al. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes, 2020,11(5):1231–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang L, Qin Q, Liu M, et al. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats. Pathog Dis, 2018,76(4)

  47. Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med, 2017,23(1):107–113

    Article  CAS  PubMed  Google Scholar 

  48. Wu F, Guo X, Zhang M, et al. An Akkermansia muciniphila subtype alleviates high-fat diet-induced metabolic disorders and inhibits the neurodegenerative process in mice. Anaerobe, 2020,61:102138

    Article  CAS  PubMed  Google Scholar 

  49. Greer RL, Dong X, Moraes AC, et al. Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism. Nat Commun, 2016,7:13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Su H, Mo J, Ni J, et al. Andrographolide Exerts Antihyperglycemic Effect through Strengthening Intestinal Barrier Function and Increasing Microbial Composition of Akkermansia muciniphila. Oxid Med Cell Longev, 2020,2020:6538930

    PubMed  PubMed Central  Google Scholar 

  51. Fujisaka S, Usui I, Nawaz A, et al. Bofutsushosan improves gut barrier function with a bloom of Akkermansia muciniphila and improves glucose metabolism in mice with diet-induced obesity. Sci Rep, 2020,10(1):5544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li N, Wang X, Sun C, et al. Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol, 2019,19(1):191

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stanley D, Moore RJ, Wong CHY. An insight into intestinal mucosal microbiota disruption after stroke. Sci Rep, 2018,8(1):568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Blacher E, Bashiardes S, Shapiro H, et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature, 2019,572(7770):474–480

    Article  CAS  PubMed  Google Scholar 

  55. Talbot K, Wang HY, Kazi H, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest, 2012,122(4):1316–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. de la Monte SM. Insulin resistance and Alzheimer’s disease. BMB Rep, 2009,42(8):475–481

    Article  CAS  PubMed  Google Scholar 

  57. Baglietto-Vargas D, Shi J, Yaeger DM, et al. Diabetes and Alzheimer’s disease crosstalk. Neurosci Biobehav Rev, 2016,64:272–287

    Article  CAS  PubMed  Google Scholar 

  58. Nagpal R, Neth BJ, Wang S, et al. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine, 2019,47:529–542.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ou Z, Deng L, Lu Z, et al. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr Diabetes, 2020,10(1):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang Y, Zhong Z, Wang B, et al. Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila. Neuropsychopharmacology, 2019,44(12):2054–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kuhn P, Kalariya HM, Poulev A, et al. Grape polyphenols reduce gut-localized reactive oxygen species associated with the development of metabolic syndrome in mice. PLoS One, 2018,13(10):e0198716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roopchand DE, Carmody RN, Kuhn P, et al. Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet-Induced Metabolic Syndrome. Diabetes, 2015,64(8):2847–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, et al. Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut. Diabetes Care, 2017, 40(1):54–62

    Article  CAS  PubMed  Google Scholar 

  64. Etxeberria U, Hijona E, Aguirre L, et al. Pterostilbene-induced changes in gut microbiota composition in relation to obesity. Mol Nutr Food Res, 2017,61(1)

  65. Hansen CH, Krych L, Nielsen DS, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia, 2012,55(8):2285–2294

    Article  CAS  PubMed  Google Scholar 

  66. Guevara-Cruz M, Flores-Lopez AG, Aguilar-Lopez M, et al. Improvement of Lipoprotein Profile and Metabolic Endotoxemia by a Lifestyle Intervention That Modifies the Gut Microbiota in Subjects With Metabolic Syndrome. J Am Heart Assoc, 2019,8(17):e012401

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ma D, Wang AC, Parikh I, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep, 2018,8(1):6670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sela U, Euler CW, Correa da Rosa J, et al. Strains of bacterial species induce a greatly varied acute adaptive immune response: The contribution of the accessory genome. PLoS Pathog, 2018,14(1):e1006726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leventhal GE, Boix C, Kuechler U, et al. Strain-level diversity drives alternative community types in millimetre-scale granular biofilms. Nat Microbiol, 2018,3(11):1295–1303

    Article  CAS  PubMed  Google Scholar 

  70. Guo X, Li S, Zhang J, et al. Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas. BMC Genomics, 2017,18(1):800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yan Y, Nguyen LH, Franzosa EA, et al. Strain-level epidemiology of microbial communities and the human microbiome. Genome Med, 2020,12(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  72. Guo X, Zhang J, Wu F, et al. Different subtype strains of Akkermansia muciniphila abundantly colonize in southern China. J Appl Microbiol, 2016,120(2):452–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ansaldo E, Slayden LC, Ching KL, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science, 2019,364(6446): 1179–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fujio-Vejar S, Vasquez Y, Morales P, et al. The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia. Front Microbiol, 2017,8:1221

    Article  PubMed  PubMed Central  Google Scholar 

  75. Xiao Y, Angulo MT, Friedman J, et al. Mapping the ecological networks of microbial communities. Nat Commun, 2017,8(1):2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bashan A, Gibson TE, Friedman J, et al. Universality of human microbial dynamics. Nature, 2016,534(7606):259–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bartolomaeus TUP, Birkner T, Bartolomaeus H, et al. Quantifying Technical Confounders in Microbiome Studies. Cardiovasc Res, 2021,117(3):863–875

    Article  CAS  PubMed  Google Scholar 

  78. Tang Q, Jin G, Wang G, et al. Current Sampling Methods for Gut Microbiota: A Call for More Precise Devices. Front Cell Infect Microbiol, 2020,10:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Panek M, Cipcic Paljetak H, Baresic A, et al. Methodology challenges in studying human gut microbiota — effects of collection, storage, DNA extraction and next generation sequencing technologies. Sci Rep, 2018, 8(1):5143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Louca S, Polz MF, Mazel F, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol, 2018,2(6):936–943

    Article  PubMed  Google Scholar 

  81. Xiao Y, Angulo MT, Lao S, et al. An ecological framework to understand the efficacy of fecal microbiota transplantation. Nat Commun, 2020,11(1):3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-jun Hong.

Additional information

Conflict of Interest Statement

The authors declare that there are no conflicts of interest related to this work.

This work was supported by grants from Double thousand talents program of Jiangxi province (No. jxsq2019101021), the National Natural Science Foundation of China (No. 82060222), the Natural Science Foundation of Jiangxi Province (No. 20181BAB205030), the Key R & D Plan of Jiangxi Science and Technology Agency-General Project (No. 20192BBG70031), and Administration of Traditional Chinese Medicine of Jiangxi Province (No. 2021B101).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Li, Fj. & Hong, Dj. Potential Role of Akkermansia muciniphila in Parkinson’s Disease and Other Neurological/Autoimmune Diseases. CURR MED SCI 41, 1172–1177 (2021). https://doi.org/10.1007/s11596-021-2464-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-021-2464-5

Key words

Navigation