Skip to main content
Log in

Diagnostic and Prognostic Significance of Keap1 mRNA Expression for Lung Cancer Based on Microarray and Clinical Information from Oncomine Database

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

We performed a bioinformatics analysis with validation by multiple databases, aiming to evaluate the diagnostic and prognostic value of Kelch-like ECH-associated protein 1 (Keap1) mRNA for lung cancer, and to explore possible mechanisms. Diagnostic performance of Keap1 mRNA was determined by receiver operating characteristic (ROC) curve analysis. Prognostic implication of Keap1 mRNA was estimated by Kaplan-Meier survival analysis. Co-expressed genes with both Keap1 and Nfe2L2 were identified by LinkedOmics. Mechanisms of Keap1-Nfe2L2-co-expressed genes underlying the pathogenesis of lung cancer were explored by function enrichment and pathway analysis. The ROC curve analysis determined a good diagnostic performance of Keap1 mRNA for lung squamous cell carcinoma (LUSC), with an area under the ROC curve (AUC) of 0.833, sensitivity of 72.7%, and specificity of 90.6% (P<0.001). Multivariate Cox regression recognized high Keap1 mRNA to be an independent risk factor of mortality for overall lung cancer [hazard ratio (HR): 11.034, P=0.044], but an independent antagonistic factor for lung adenocarcinoma (LUAD) (HR: 0.404, P<0.001). Validation by UALCAN and GEPIA supported Oncomine findings regarding the diagnostic value of Keap1 mRNA for LUSC, but denied its prognostic value. After screening, we identified 17 co-expressed genes with both Keap1 and Nfe2L2 for LUAD, and 22 for LUSC, mainly enriched in signaling pathway of oxidative stress-induced gene expression via Nrf2. In conclusion, Keap1 mRNA has a good diagnostic performance, but controversial prognostic efficacy for LUSC. The pathogenesis of lung cancer is associated with Keap1-Nfe2L2-co-expressed genes by signaling pathway of oxidative stress-induced gene expression via Nrf2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruiz R, Hunis B, Raez LE. Immunotherapeutic agents in non-small-cell lung cancer finally coming to the front lines. Curr Oncol Rep, 2014,16(9):400

    Article  PubMed  Google Scholar 

  2. Rosell R, Skrzypski M, Jassem E, et al. BRCA1: a novel prognostic factor in resected non-small-cell lung cancer. PLoS One, 2007,2(11):e1129

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu W, Ouyang S, Zhou Z, et al. Identification of genes associated with cancer progression and prognosis in lung adenocarcinoma: Analyses based on microarray from Oncomine and The Cancer Genome Atlas databases. Mol Genet Genomic Med, 2019,7(2):e00528

    Article  PubMed  Google Scholar 

  4. Allemani C, Weir HK, Carreira H, et al. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet, 2015,385(9972):977–1010

    Article  PubMed  Google Scholar 

  5. Hou GX, Liu P, Yang J, et al. Mining expression and prognosis of topoisomerase isoforms in non-small-cell lung cancer by using Oncomine and Kaplan-Meier plotter. PLoS One, 2017,12(3):e0174515

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu B, Yang S, Sun H, et al. Keap1 Inhibits Metastatic Properties of NSCLC Cells by Stabilizing Architectures of F-Actin and Focal Adhesions. Mol Cancer Res, 2018,16(3):508–516

    Article  CAS  PubMed  Google Scholar 

  7. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature, 2012,489(7417):519–525

    Article  Google Scholar 

  8. Gomez DR, Byers LA, Nilsson M, et al. Integrative proteomic and transcriptomic analysis provides evidence for TrkB (NTRK2) as a therapeutic target in combination with tyrosine kinase inhibitors for non-small cell lung cancer. Oncotarget, 2018,9(18):14 268–14 284

    Article  Google Scholar 

  9. Cloer EW, Goldfarb D, Schrank TP, et al. NRF2 Activation in Cancer: From DNA to Protein. Cancer Res, 2019,79(5):889–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leinonen HM, Kansanen E, Polonen P, et al. Dysregulation of the Keap1-Nrf2 pathway in cancer. Biochem Soc Trans, 2015,43(4):645–649

    Article  CAS  PubMed  Google Scholar 

  11. Huddleston HG, Wong KK, Welch WR, et al. Clinical applications of microarray technology: creatine kinase B is an up-regulated gene in epithelial ovarian cancer and shows promise as a serum marker. Gynecol Oncol, 2005,96(1):77–83

    Article  CAS  PubMed  Google Scholar 

  12. Hormigo A, Gu B, Karimi S, et al. YKL-40 and matrix metalloproteinase-9 as potential serum biomarkers for patients with high-grade gliomas. Clin Cancer Res, 2006,12(19):5698–5704

    Article  CAS  PubMed  Google Scholar 

  13. Jiang X, Barmada MM, Visweswaran S. Identifying genetic interactions in genome-wide data using Bayesian networks. Genet Epidemiol, 2010,34(6):575–581

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xie ZC, Dang YW, Wei DM, et al. Clinical significance and prospective molecular mechanism of MALAT1 in pancreatic cancer exploration: a comprehensive study based on the GeneChip, GEO, Oncomine, and TCGA databases. Onco Targets Ther, 2017,10:3991–4005

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meng N, Wang J, Sun J, et al. Using amide proton transfer to identify cervical squamous carcinoma/adenocarcinoma and evaluate its differentiation grade. Magn Reson Imaging, 2019,61:9–15

    Article  CAS  PubMed  Google Scholar 

  16. Jiang Y, Zheng X, Jiao D, et al. Peptidase inhibitor 15 as a novel blood diagnostic marker for cholangiocarcinoma. EBioMedicine, 2019,40:422–431

    Article  PubMed  PubMed Central  Google Scholar 

  17. Heilbroner SP, Xanthopoulos EP, Buono D, et al. Impact of estrogen monotherapy on survival in women with stage III-IV non-small cell lung cancer. Lung Cancer, 2019,129: 8–15

    Article  PubMed  Google Scholar 

  18. Huang X, Zhao J, Bai J, et al. Risk and clinicopathological features of osteosarcoma metastasis to the lung: A population-based study. J Bone Oncol, 2019,16:100230

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khorrami M, Jain P, Bera K, et al. Predicting pathologic response to neoadjuvant chemoradiation in resectable stage III non-small cell lung cancer patients using computed tomography radiomic features. Lung Cancer, 2019,135:1–9

    Article  PubMed  Google Scholar 

  20. Yamamoto M, Kurokawa Y, Kobayashi N, et al. Prognostic Value of the Combined Index of Plasma Fibrinogen and the Neutrophil-Lymphocyte Ratio in Gastric Cancer. World J Surg, 2020,44(1):207–212

    Article  PubMed  Google Scholar 

  21. Wang S, Xiong Y, Zhao Q, et al. Columnar cell papillary thyroid carcinoma prognosis: findings from the SEER database using propensity score matching analysis. Am J Transl Res, 2019,11(9):6262–6270

    PubMed  PubMed Central  Google Scholar 

  22. Xu M, Jin T, Chen L, et al. Mortalin is a distinct bio-marker and prognostic factor in serous ovarian carcinoma. Gene, 2019,696:63–71

    Article  CAS  PubMed  Google Scholar 

  23. Li F, Guo P, Dong K, et al. Identification of Key Biomarkers and Potential Molecular Mechanisms in Renal Cell Carcinoma by Bioinformatics Analysis. J Comput Biol, 2019,26(11):1278–1295

    Article  CAS  PubMed  Google Scholar 

  24. Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA, 2001,98(24): 13 790–13 795

    Article  CAS  Google Scholar 

  25. Garber ME, Troyanskaya OG, Schluens K, et al. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA, 2001,98(24):13784–13789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beer DG, Kardia SL, Huang CC, et al. Gene-expression profiles predict survival of patients with lung adenocarcmoma. Nat Med, 2002,8(8):816–824

    Article  CAS  PubMed  Google Scholar 

  27. Wachi S, Yoneda K, Wu R. Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics, 2005,21(23):4205–4208

    Article  CAS  PubMed  Google Scholar 

  28. Talbot SG, Estilo C, Maghami E, et al. Gene expression profiling allows distinction between primary and metastatic squamous cell carcinomas in the lung. Cancer Res, 2005,65(8):3063–3071

    Article  CAS  PubMed  Google Scholar 

  29. Selamat SA, Chung BS, Girard L, et al. Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. Genome Res, 2012,22(7):1197–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stearman RS, Dwyer-Nield L, Zerbe L, et al. Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. Am J Pathol, 2005,167(6):1763–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hou J, Aerts J, den Hamer B, et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS One, 2010,5(4):e10312

    Article  PubMed  PubMed Central  Google Scholar 

  32. Su LJ, Chang CW, Wu YC, et al. Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme. BMC Genomics, 2007,8:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Okayama H, Kohno T, Ishii Y, et al. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res, 2012,72(1):100–111

    Article  CAS  PubMed  Google Scholar 

  34. Landi MT, Dracheva T, Rotunno M, et al. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One, 2008,3(2):e1651

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen C, Guo Q, Song Y, et al. SKA1/2/3 serves as a biomarker for poor prognosis in human lung adenocarcinoma. Transl Lung Cancer Res, 2020,9(2): 218–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao Y, Xue C, Xie Z, et al. Comprehensive analysis of ubiquitin-specific protease 1 reveals its importance in hepatocellular carcinoma. Cell Prolif, 2020,53(10):e12908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wong KF, Xu Z, Chen J, et al. Circulating markers for prognosis of hepatocellular carcinoma. Expert Opin Med Diagn, 2013,7(4):319–329

    Article  CAS  PubMed  Google Scholar 

  38. Frank R, Scheffler M, Merkelbach-Bruse S, et al. Clinical and Pathological Characteristics of KEAP1- and NFE2L2-Mutated Non-Small Cell Lung Carcinoma (NSCLC). Clin Cancer Res, 2018,24(13):3087–3096

    Article  CAS  PubMed  Google Scholar 

  39. Zhao J, Lin X, Meng D, et al. Nrf2 Mediates Metabolic Reprogramming in Non-Small Cell Lung Cancer. Front Oncol, 2020,10:578315

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu Q, Gao Y, Ci X. Role of Nrf2 and Its Activators in Respiratory Diseases. Oxid Med Cell Longev, 2019, 2019:7090534

    PubMed  PubMed Central  Google Scholar 

  41. Mizumura K, Maruoka S, Shimizu T, et al. Role of Nrf2 in the pathogenesis of respiratory diseases. Respir Investig, 2020,58(1):28–35

    Article  PubMed  Google Scholar 

  42. Pan Y, Li W, Feng Y, et al. Edaravone attenuates experimental asthma in mice through induction of HO-1 and the Keap1/Nrf2 pathway. Exp Ther Med, 2020,19(2):1407–1416

    CAS  PubMed  Google Scholar 

  43. Chapple SJ, Cheng X, Mann GE. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol, 2013,1(1):319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morimitsu Y, Nakagawa Y, Hayashi K, et al. A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway. J Biol Chem, 2002,277(5):3456–3463

    Article  CAS  PubMed  Google Scholar 

  45. Conaway CC, Wang CX, Pittman B, et al. Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res, 2005,65(18):8548–8557

    Article  CAS  PubMed  Google Scholar 

  46. Hellyer JA, Padda SK, Diehn M, et al. Clinical implications of KEAP1-NFE2L2 mutations in non-small cell lung cancer. J Thorac Oncol, 2021,16(3):395–403

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-qian Wan.

Ethics declarations

All authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Gy., Zhang, W., Chen, Xc. et al. Diagnostic and Prognostic Significance of Keap1 mRNA Expression for Lung Cancer Based on Microarray and Clinical Information from Oncomine Database. CURR MED SCI 41, 597–609 (2021). https://doi.org/10.1007/s11596-021-2378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-021-2378-2

Key words

Navigation