Skip to main content
Log in

Down-regulation and Clinical Implication of Galectin-9 Levels in Patients with Acute Coronary Syndrome and Chronic Kidney Disease

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

In various autoimmune diseases, Galecin-9 (Gal-9) has been shown to regulate the T-cell balance by decreasing Th1 and Th17, while increasing the number of regulatory T cells (Tregs). However, the role of Gal-9 in the patients with acute coronary syndrome (ACS) and chronic kidney disease (CKD) remains unclear. This study aims to measure the Gal-9 levels in serum and peripheral blood mononuclear cells (PBMCs) in patients with ACS plus CKD and examine their clinical implication. The serum levels of Gal-9 were determined by enzyme-linked immunosorbent assay (ELISA), the expression levels of Gal-9, Tim-3, and Foxp3 mRNA in PBMCs were detected by real-time reverse transcription-polymerase chain reaction (RT-PCR), and the expression of Gal-9 on the surface of PBMCs and in PBMCs was analyzed by flow cytometry. Furthermore, the correlation of serum Gal-9 levels with anthropometric and biochemical variables in patients with ACS plus CKD was analyzed. The lowest levels of Gal-9 in serum and PBMCs were found in the only ACS group, followed by the ACS+CKD group, and the normal coronary artery (NCA) group, respectively. Serum Gal-9 levels were increased along with the progression of glomerular filtration rate (GFR) categories of G1 to G4. Additionally, serum Gal-9 levels were negatively correlated with high-sensitivity C-reactive protein (hs-CRP), estimated GFR (eGFR), and lipoprotein(a), but positively with creatinine, age, osmotic pressure, and blood urea nitrogen (BUN). Notably, serum Gal-9 was independently associated with hs-CRP, osmotic pressure, and lipoprotein(a). Furthermore, serum Gal-9 levels were elevated in patients with type 2 diabetes (T2DM) and impaired glucose tolerance (IGT) in ACS group. It was suggested that the levels of Gal-9 in serum and PBMCs were decreased in patients with simple ACS and those with ACS plus CKD, and hs-CRP, eGFR, osmotic pressure and T2DM may have an influence on serum Gal-9 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol, 2012,32(9):2045–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med, 2005,352:1685–1695

    Article  CAS  PubMed  Google Scholar 

  3. Hansson GK. Innate and Adaptive Immunity in the Pathogenesis of Atherosclerosis. Circ Res, 2002,91(4):281–291

    Article  CAS  PubMed  Google Scholar 

  4. Laurat E, Poirier B, Tupin E, et al. In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation, 2001,104:197–202

    Article  CAS  PubMed  Google Scholar 

  5. Methe H, Brunner S, Wiegand D, et al. Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes. J Am Coll Cardiol, 2005,45(12):1939–1945

    Article  CAS  PubMed  Google Scholar 

  6. Cheng X, Liao YH, Ge H, et al. TH1/TH2 functional imbalance after acute myocardial infarction: coronary arterial inflammation or myocardial inflammation. J Clin Immunol, 2005,25(3):246–253

    Article  CAS  PubMed  Google Scholar 

  7. Cheng X, Yu X, Ding YJ, et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol, 2008,127(1):89–97

    Article  CAS  PubMed  Google Scholar 

  8. Kishore U, Eggleton P, Reid KB, et al. Modular organization of carbohydrate recognition domains in animal lectins. Matrix Biology, 1997,15:583–592

    Article  CAS  PubMed  Google Scholar 

  9. Zhu C, Anderson AC, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol, 2005,6(12):1245–1252

    Article  CAS  PubMed  Google Scholar 

  10. Kashio Y, Nakamura K, Abedin MJ, et al. Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway. J Immunol, 2003,170(7):3631–3636

    Article  CAS  PubMed  Google Scholar 

  11. Wang F, Xu J, Liao Y, et al. Tim-3 ligand galectin-9 reduces IL-17 level and accelerates Klebsiella pneumoniae infection. Cell Immunol, 2011,269(1):22–28

    Article  CAS  PubMed  Google Scholar 

  12. Oomizu S, Arikawa T, Niki T, et al. Galectin-9 suppresses Th17 cell development in an IL-2-dependent but Tim-3-independent manner. Clin Immunol, 2012,143(1):51–58

    Article  CAS  PubMed  Google Scholar 

  13. Bi S, Earl LA, Jacobs L, et al. Structural features of galectin-9 and galectin-1 that determine distinct T cell death pathways. J Biol Chem, 2008,283(18):12 248–12 258

    Article  CAS  Google Scholar 

  14. Wang F, Wan L, Zhang C, et al. Tim-3-Galectin-9 pathway involves the suppression induced by CD4+CD25+ regulatory T cells. Immunobiology, 2009,214(5):342–349

    Article  CAS  PubMed  Google Scholar 

  15. Seki M, Oomizu S, Sakata KM, et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin Immunol, 2008,127(1):78–88

    Article  CAS  PubMed  Google Scholar 

  16. Chou FC, Shieh SJ, Sytwu HK. Attenuation of Th1 response through galectin-9 and T-cell Ig mucin 3 interaction inhibits autoimmune diabetes in NOD mice. Eur J Immunol, 2009,39(9):2403–2411

    Article  CAS  PubMed  Google Scholar 

  17. Kanzaki M, Wada J, Sugiyama K, et al. Galectin-9 and T cell immunoglobulin mucin-3 pathway is a therapeutic target for type 1 diabetes. Endocrinology, 2012,153(2):612–620

    Article  CAS  PubMed  Google Scholar 

  18. Leitner J, Rieger A, Pickl WF, et al. TIM-3 does not act as a receptor for galectin-9. PLoS Pathog, 2013,9(3):e1003253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vaitaitis GM, Wagner DH, Jr. Galectin-9 controls CD40 signaling through a Tim-3 independent mechanism and redirects the cytokine profile of pathogenic T cells in autoimmunity. PLoS One, 2012,7(6):e38708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Su EW, Bi S, Kane LP. Galectin-9 regulates T helper cell function independently of Tim-3. Glycobiology, 2011,21(10):1258–1265

    Article  CAS  PubMed  Google Scholar 

  21. Foks AC, Ran IA, Wasserman L, et al. T-cell immunoglobulin and mucin domain 3 acts as a negative regulator of atherosclerosis. Arterioscler Thromb Vasc Biol, 2013,33(11):2558–2565

    Article  CAS  PubMed  Google Scholar 

  22. Kurose Y, Wada J, Kanzaki M, et al. Serum galectin-9 levels are elevated in the patients with type 2 diabetes and chronic kidney disease. BMC Nephrology, 2013,14:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu R, Liu C, Tang H, et al. Serum Galectin-9 Levels Are Associated with Coronary Artery Disease in Chinese Individuals. Mediators Inflamm, 2015,2015:457167

    PubMed  PubMed Central  Google Scholar 

  24. Levey AS, de Jong PE, Coresh J, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int, 2011,80(1):17–28

    Article  PubMed  Google Scholar 

  25. Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis, 2009,53(6):982–992

    Article  CAS  PubMed  Google Scholar 

  26. Gotsman I, Grabie N, Gupta R, et al. Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation, 2006,114(19):2047–2055

    Article  CAS  PubMed  Google Scholar 

  27. Mor A, Planer D, Luboshits G, et al. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol, 2007,27(4):893–900

    Article  CAS  PubMed  Google Scholar 

  28. Xie JJ, Wang J, Tang TT, et al. The Th17/Treg functional imbalance during atherogenesis in ApoE(-/-) mice. Cytokine, 2010,49(2):185–193

    Article  CAS  PubMed  Google Scholar 

  29. Koguchi K, Anderson DE, Yang L, et al. Dysregulated T cell expression of TIM3 in multiple sclerosis. J Exp Med, 2006,203(6):1413–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chabot SKY, Seki M, Shirato Y, et al. Regulation of galectin-9 expression and release in Jurkat T cell line cells. Glycobiology, 2002,12:111–118

    Article  CAS  PubMed  Google Scholar 

  31. Delacour D, Koch A, Jacob R. The role of galectins in protein trafficking. Traffic, 2009,10(10):1405–1413

    Article  CAS  PubMed  Google Scholar 

  32. Chirico WJ. C Protein release through nonlethal oncotic pores as an alternative nonclassical secretory pathway. BMC Cell Biol, 2011,12:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Corson MA. Emerging inflammatory markers for assessing coronary heart disease risk. Current Cardiology Reports, 2009,11:452–459

    Article  PubMed  Google Scholar 

  34. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med, 2011,17(11):1410–1422

    Article  CAS  PubMed  Google Scholar 

  35. Cheng XW, Kikuchi R, Ishii H, et al. Circulating cathepsin K as a potential novel biomarker of coronary artery disease. Atherosclerosis, 2013,228(1):211–216

    Article  CAS  PubMed  Google Scholar 

  36. Drakopoulou M, Toutouzas K, Stefanadi E, et al. Association of inflammatory markers with angiographic severity and extent of coronary artery disease. Atherosclerosis, 2009,206(2):335–339

    Article  CAS  PubMed  Google Scholar 

  37. Noren Hooten N, Ejiogu N, Zonderman AB, et al. Association of oxidative DNA damage and C-reactive protein in women at risk for cardiovascular disease. Arterioscler Thromb Vasc Biol, 2012,32(11):2776–2784

    Article  PubMed  Google Scholar 

  38. Arroyo-Espliguero R, Avanzas P, Cosin-Sales J, et al. C-reactive protein elevation and disease activity in patients with coronary artery disease. Eur Heart J, 2004,25(5):401–408

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-cheng Zhong or Qiu-tang Zeng.

Ethics declarations

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

This project was supported by grants from National Natural Science Foundation of China (No. 81270354) and Natural Science for Youth Foundation (No. 81300213).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Jh., Zhu, Rr., Zhao, L. et al. Down-regulation and Clinical Implication of Galectin-9 Levels in Patients with Acute Coronary Syndrome and Chronic Kidney Disease. CURR MED SCI 40, 662–670 (2020). https://doi.org/10.1007/s11596-020-2238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-020-2238-5

Key words

Navigation