Skip to main content
Log in

Role of Wnt/β-Catenin Pathway in the Arterial Medial Calcification and Its Effect on the OPG/RANKL System

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

In this study, the hypothesis that Wnt/β-catenin pathway is involved in the arterial calcification by regulating the osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) system was tested. The β-catenin expression was measured in the warfarin-induced calcified arteries and the osteoblast-like cells differentiating from smooth muscle cells (SMCs) by immunohistochemistry and Western blotting. The Wnt/β-catenin pathway was activated or inhibited by lithium chloride (LiCl) or dickkopf 1 (DKK1) in vitro and in vivo. Then the calcification level was determined by von Kossa staining, Ca2+ content assay, and alkaline phosphatase (ALP) activity assay. The expression levels of osteocalcin, OPG and RANKL were detected by Western blotting or real-time PCR. The results showed that in calcified arteries and OBL cells, the activation of Wnt/β-catenin pathway significantly enhanced the calcification as evidenced by increased von Kossa stains, Ca2+ contents, ALP activities, and osteocalcin expression levels (P<0.05), and it promoted the RANKL expression (P<0.05), but slightly affected the OPG expression. These results indicated that the activation of Wnt/β-catenin pathway worsens the arterial calcification, probably by promoting the RANKL expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rennenberg RJ, Schurgers LJ, Kroon AA, et al. Arterial calcifications. J Cell Mol Med, 2010,14(9):2203–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Valdivielso JM. Vascular calcification: types and mechanisms. Nefrologia, 2011,31(2):142–147

    CAS  PubMed  Google Scholar 

  3. Tsushima M. Aortic calcification and calcium. Clin Calcium, 2010,20(11):1627–1635

    CAS  PubMed  Google Scholar 

  4. Harper E, Forde H, Davenport C, et al. Vascular calcification in type–2 diabetes and cardiovascular disease: Integrative roles for OPG, RANKL and TRAIL. Vascul Pharmacol, 2016,7(82):30–40

    Article  CAS  Google Scholar 

  5. Neven E, De Schutter TM, De Broe ME, et al. Cell biological and physicochemical aspects of arterial calcification. Kidney Int, 2011,79(11):1166–1177

    Article  CAS  PubMed  Google Scholar 

  6. Leopold JA. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med, 2015,25(4):267–274

    Article  CAS  PubMed  Google Scholar 

  7. Ogawa T, Nitta K. Pathogenesis and Management of Vascular Calcification in Patients with End–Stage Renal Disease. Contrib Nephrol, 2018,196:71–77

    Article  PubMed  Google Scholar 

  8. Bardeesi ASA, Gao J, Zhang K, et al. A novel role of cellular interactions in vascular calcification. J Transl Med, 2017,15(1):95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nusse R, Clevers H. Wnt/ß–Catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017,169(6):985–999

    Article  CAS  PubMed  Google Scholar 

  10. Kramer I, Halleux C, Keller H, et al. Osteocyte Wnt/ beta–catenin signaling is required for normal bone homeostasis. Mol Cell Biol, 2010,30(12):3071–3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kubota T, Michigami T, Ozono K. Wnt signaling in bone metabolism. J Bone Miner Metab, 2009,27(3):265–271

    Article  CAS  PubMed  Google Scholar 

  12. Trouvin AP, Goëb V. Receptor activator of nuclear factor–?B ligand and osteoprotegerin: maintaining the balance to prevent bone loss, Clin Interv Aging, 2010,19(5):345–354

    Google Scholar 

  13. Boyce BF, Xing L. The RANKL/RANK/OPG pathway. Curr Osteoporos Rep, 2007,5(3):98–104

    Article  PubMed  Google Scholar 

  14. D’Amelio P, Isaia G, Isaia GC. The osteoprotegerin/RANK/RANKL system: a bone key to vascular disease. J Endocrinol Invest, 2009,32(4):6–9

    PubMed  Google Scholar 

  15. Shen C, Yuan Y, Li F, et al. Mechanism of genistein regulating the differentiation of vascular smooth muscle cells into osteoblasts via the OPG/RANKL pathway. Oncotarget, 2017,8(44):76857–76864

    PubMed  PubMed Central  Google Scholar 

  16. Xie H, Xie PL, Wu XP, et al. Omentin–1 attenuates arterial calcification and bone loss in osteoprotegerindeficient mice by inhibition of RANKL expression. Cardiovasc Res, 2011,92(2):296–306

    Article  CAS  PubMed  Google Scholar 

  17. Helas S, Goettsch C, Schoppet M, et al. Inhibition of receptor activator of NF–kappaB ligand by denosumab attenuates vascular calcium deposition in mice. Am J Pathol, 2009,175(2):473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Campenhout A, Golledge J. Osteoprotegerin, vascular calcification and atherosclerosis. Atherosclerosis, 2009, 204(2):321–329

    Article  CAS  PubMed  Google Scholar 

  19. Schoppet M, Kavurma MM, Hofbauer LC, et al. Crystallizing nanoparticles derived from vascular smooth muscle cells contain the calcification inhibitor osteoprotegerin. Biochem Biophys Res Commun, 2011,407(1):103–107

    Article  CAS  PubMed  Google Scholar 

  20. Liu C, Wan J, Yang Q, et al. Effects of atorvastatin on warfarin–induced aortic medial calcification and systolic blood pressure in rats. J Huazhong Univ Sci Technolog Med Sci, 2008,28(5):535–538

    Article  CAS  PubMed  Google Scholar 

  21. Clément–Lacroix P, Ai M, Morvan F, et al. Lrp5–independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA, 2005,102(48):17406–17411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Castellot J, Favreau LV, Karnovsky MJ, et al. Inhibition of vascular smooth muscle cell growth by endothelial cell–derived heparin. Possible role of a platelet endoglycosidase. J Biol Chem, 1982,257(19):11256–11260

    CAS  PubMed  Google Scholar 

  23. Olesen P, Nguyen K, Wogensen L, et al. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high–dose insulin. Am J Physiol Heart Circ Physiol, 2007,292(2):1058–1064

    Article  CAS  Google Scholar 

  24. Heo JS, Lee SY, Lee JC. Wnt/ß–catenin signaling enhances osteoblastogenic differentiation from human periodontal ligament fibroblasts. Mol Cells, 2010,30(5): 449–454

    Article  CAS  PubMed  Google Scholar 

  25. Demer LL, Tintut Y. Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol, 2014,34(4):715–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eijken M, Meijer IM, Westbroek I, et al. Wnt signaling acts and is regulated in a human osteoblast differentiation dependent manner. J Cell Biochem, 2008,104(2):568–579

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Liu P, Liu W, et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet, 2005,37(9):945–952

    Article  CAS  PubMed  Google Scholar 

  28. Osako MK, Nakagami H, Koibuchi N, et al. Estrogen inhibits vascular calcification via vascular RANKL system: common mechanism of osteoporosis and vascular calcification. Circ Res, 2010,107(4):466–475

    Article  CAS  PubMed  Google Scholar 

  29. Panizo S, Cardus A, Encinas M, et al. RANKL increases vascular smooth muscle cell calcification through a RANK–BMP4–dependent pathway. Circ Res, 2009,104(9):1041–1048

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shao-ying Zhang or Si-ming Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, B., Zhang, Sy., Guan, Sm. et al. Role of Wnt/β-Catenin Pathway in the Arterial Medial Calcification and Its Effect on the OPG/RANKL System. CURR MED SCI 39, 28–36 (2019). https://doi.org/10.1007/s11596-019-1996-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-019-1996-4

Key words

Navigation