Skip to main content
Log in

Application of Finite Element Analysis for Investigation of Intervertebral Disc Degeneration: from Laboratory to Clinic

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Due to the ethical concern and inability to detect inner stress distributions of intervertebral disc (IVD), traditional methods for investigation of intervertebral disc degeneration (IVDD) have significant limitations. Many researchers have demonstrated that finite element analysis (FEA) is an effective tool for the research of IVDD. However, the specific application of FEA for investigation of IVDD has not been systematically elucidated before. In the present review, we summarize the current finite element models (FEM) used for the investigation of IVDD, including the poroelastic nonlinear FEM, diffusive-reactive theory model and cell-activity coupled mechano-electrochemical theory model. We further elaborate the use of FEA for the research of IVDD pathogenesis especially for nutrition and biomechanics associated etiology, and the biological, biomechanical and clinical influences of IVDD. In addition, the application of FEA for evaluation and exploration of various treatments for IVDD is also elucidated. We conclude that FEA is an excellent technique for research of IVDD, which could be used to explore the etiology, biology and biomechanics of IVDD. In the future, FEA may help us to achieve the goal of individualized precision therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams MA, Dolan P. Spine biomechanics. J Biomech, 2005,38(10):1972–1983

    Article  PubMed  Google Scholar 

  2. Choi H, Johnson ZI, Risbud MV. Understanding nucleus pulposus cell phenotype: a prerequisite for stem cell based therapies to treat intervertebral disc degeneration. Curr Stem Cell Res Ther, 2015,10(4):307–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoy D, March L, Brooks P, et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis, 2014,73(6):968–974

    Article  PubMed  Google Scholar 

  4. Chen S, Lv X, Hu B, et al. RIPK1/RIPK3/MLKLmediated necroptosis contributes to compressioninduced rat nucleus pulposus cells death. Apoptosis, 2017, 22(5):626–638

    Article  CAS  PubMed  Google Scholar 

  5. Alini M, Eisenstein SM, Ito K, et al. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J, 2008,17(1):2–19

    Article  PubMed  Google Scholar 

  6. Gantenbein B, Illien-Jünger S, Chan S, et al. Organ Culture Bioreactors-Platforms to Study Human Intervertebral Disc Degeneration and Regenerative Therapy. Curr Stem Cell Res Ther, 2015,10(4): 339–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moon SM, Yoder JH, Wright AC, et al. Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging. Eur Spine J, 2013,22(8):1820–1828

    Article  PubMed  PubMed Central  Google Scholar 

  8. Miele VJ, Panjabi MM, Benzel EC. Anatomy and biomechanics of the spinal column and cord. Handb Clin Neurol, 2012,109:31–43

    Article  PubMed  Google Scholar 

  9. Chadderdon RC, Shimer AL, Gilbertson LG, et al. Advances in gene therapy for intervertebral disc degeneration. Spine J, 2004,4(6 Suppl):341s–347s

    Article  PubMed  Google Scholar 

  10. Fagan MJ, Julian S, Mohsen AM. Finite element analysis in spine research. Proc Inst Mech Eng H, 2002,216(5):281–298

    Article  CAS  PubMed  Google Scholar 

  11. Brekelmans WA, Poort HW, Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand, 1972,43(5): 301–317

    Article  CAS  PubMed  Google Scholar 

  12. Nikkhoo M, Hsu YC, Haghpanahi M, et al. A metamodel analysis of a finite element simulation for defining poroelastic properties of intervertebral discs. Proc Inst Mech Eng H, 2013,227(6):672–682

    Article  PubMed  Google Scholar 

  13. Belytschko T, Kulak RF, Schultz AB, et al. Finite element stress analysis of an intervertebral disc. J Biomec, 1974,7(3):277–285

    Article  CAS  Google Scholar 

  14. Malandrino A, Noailly J, Lacroix D. The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes. PLoS Comput Biol, 2011,7(8): e1002112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song C, Li XF, Liu ZD, et al. Biomechanical assessment of a novel L4/5 level interspinous implant using three dimensional finite element analysis. Eur Rev Med Pharmacol Sci, 2014,18(1): 86–94

    CAS  PubMed  Google Scholar 

  16. Tang S. Does TLIF aggravate adjacent segmental degeneration more adversely than ALIF? A finite element study. Turk Neurosurg, 2012,22(3):324–328

    PubMed  Google Scholar 

  17. Travascio F, Elmasry S, Asfour S. Modeling the role of IGF-1 on extracellular matrix biosynthesis and cellularity in intervertebral disc. J Biomech, 2014, 47(10):2269–2276

    Article  PubMed  Google Scholar 

  18. Ibarz E, Herrera A, Mas Y, et al. Development and kinematic verification of a finite element model for the lumbar spine: application to disc degeneration. Acta Bioeng Biomech, 2013,2013:705185

    Google Scholar 

  19. Hussain M, Natarajan RN, An HS, et al. Progressive disc degeneration at C5-C6 segment affects the mechanics between disc heights and posterior facets above and below the degenerated segment: A flexion-extension investigation using a poroelastic C3-T1 finite element model. Med Eng Phys, 2012, 34(5):552–558

    Article  PubMed  Google Scholar 

  20. Zhu Q, Gao X, Levene HB, et al. Influences of Nutrition Supply and Pathways on the Degenerative Patterns in Human Intervertebral Disc. Spine, 2016,41(7): 568–576

    Article  PubMed  PubMed Central  Google Scholar 

  21. Natarajan RN, Williams JR, Andersson GB. Modeling changes in intervertebral disc mechanics with degeneration. J Bone Joint Surg Am, 2006, 88(Suppl 2):36–40

    PubMed  Google Scholar 

  22. Massey CJ, van Donkelaar CC, Vresilovic E, et al. Effects of aging and degeneration on the human intervertebral disc during the diurnal cycle: a finite element study. J Orthop Res, 2012,30(1):122–128

    Article  PubMed  Google Scholar 

  23. Qasim M, Natarajan RN, An HS, et al. Damage accumulation location under cyclic loading in the lumbar disc shifts from inner annulus lamellae to peripheral annulus with increasing disc degeneration. J Biomech, 2014,47(1): 24–31

    Article  PubMed  Google Scholar 

  24. von Forell GA, Stephens TK, Samartzis D, et al. Low Back Pain: A Biomechanical Rationale Based on "Patterns" of Disc Degeneration. Spine, 2015, 40(15):1165–1172

    Article  Google Scholar 

  25. Wu Y, Wang Y, Wu J, et al. Study of Double-level Degeneration of Lower Lumbar Spines by Finite Element Model. World Neurosurg, 2016, 86:294–299

    Article  PubMed  Google Scholar 

  26. Tang S, Rebholz BJ. Does anterior lumbar interbody fusion promote adjacent degeneration in degenerative disc disease? A finite element study. J Orthop Sci, 2011,16(2):221–228

    Article  PubMed  Google Scholar 

  27. Hussain M, Natarajan RN, An HS, et al. Reduction in segmental flexibility because of disc degeneration is accompanied by higher changes in facet loads than changes in disc pressure: a poroelastic C5-C6 finite element investigation. Spine J, 2010,10(12):1069–1077

    Article  PubMed  Google Scholar 

  28. Ellingson AM, Shaw MN, Giambini H, et al. Comparative role of disc degeneration and ligament failure on functional mechanics of the lumbar spine. Comput Methods Biomech Biomed Engin, 2016,19(9):1009–1018

    Article  PubMed  Google Scholar 

  29. Schmidt H, Galbusera F, Rohlmann A, et al. Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis. Eur Spine J, 2012, 21(Suppl 5):S663–S674

    Article  PubMed  Google Scholar 

  30. Little JP, Adam CJ, Evans JH, et al. Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc. J Biomech, 2007,40(12):2744–2751

    Article  CAS  PubMed  Google Scholar 

  31. Homminga J, Aquarius R, Bulsink VE, et al. Can vertebral density changes be explained by intervertebral disc degeneration? Med Eng Phys, 2012,34(4): 453–458

    Article  PubMed  Google Scholar 

  32. Elmasry S, Asfour S, de Rivero Vaccari JP, et al. Effects of Tobacco Smoking on the Degeneration of the Intervertebral Disc: A Finite Element Study. PLoS One, 2015,10(8): e0136137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Han I, Ropper AE, Konya D, et al. Biological Approaches to Treating Intervertebral Disk Degeneration: Devising Stem Cell Therapies. Cell Transplantation, 2015,24(11): 2197–2208

    Article  PubMed  Google Scholar 

  34. Asfour S, Travascio F, Elmasry S, et al. A computational analysis on the implications of age-related changes in the expression of cellular signals on the role of IGF-1 in intervertebral disc homeostasis. J Biomech, 2015,48(2): 332–339

    Article  PubMed  Google Scholar 

  35. Zhu Q, Gao X, Gu W. Temporal changes of mechanical signals and extracellular composition in human intervertebral disc during degenerative progression. J Biomech, 2014,47(15):3734–3743

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhu Q, Jackson AR, Gu WY. Cell viability in intervertebral disc under various nutritional and dynamic loading conditions: 3d finite element analysis. J Biomech, 2012,45(16):2769–2777

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jackson AR, Huang CY, Brown MD, et al. 3D finite element analysis of nutrient distributions and cell viability in the intervertebral disc: effects of deformation and degeneration. J Biomech Eng, 2011,133(9):091006

    Article  PubMed  Google Scholar 

  38. Zhu Q, Gao X, Brown MD, et al. Simulation of water content distributions in degenerated human intervertebral discs. J Orthop Res, 2017,35(1):147–153

    Article  CAS  PubMed  Google Scholar 

  39. Chagnon A, Aubin CE, Villemure I. Biomechanical influence of disk properties on the load transfer of healthy and degenerated disks using a poroelastic finite element model. J Biomech Eng, 2010,132(11):111006

    Article  PubMed  Google Scholar 

  40. Galbusera F, Schmidt H, Neidlinger-Wilke C, et al. The mechanical response of the lumbar spine to different combinations of disc degenerative changes investigated using randomized poroelastic finite element models. Eur Spine J, 2011,20(4):563–571

    Article  PubMed  Google Scholar 

  41. Huang CY, Travascio F, Gu WY. Quantitative analysis of exogenous IGF-1 administration of intervertebral disc through intradiscal injection. J Biomech, 2012,45(7):1149–1155

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hussain M, Natarajan RN, An HS, et al. Motion changes in adjacent segments due to moderate and severe degeneration in C5-C6 disc: a poroelastic C3-T1 finite element model study. Spine, 2010,35(9): 939–947

    Article  PubMed  Google Scholar 

  43. Gu W, Zhu Q, Gao X, et al. Simulation of the progression of intervertebral disc degeneration due to decreased nutritional supply. Spine, 2014,39(24): E1411–E1417

    Article  PubMed  PubMed Central  Google Scholar 

  44. Smith LJ, Nerurkar NL, Choi KS, et al. Degeneration and regeneration of the intervertebral disc: lessons from development. Dis Model Mech, 2011,4(1): 31–41

    Article  PubMed  CAS  Google Scholar 

  45. Huang CY, Gu WY. Effects of mechanical compression on metabolism and distribution of oxygen and lactate in intervertebral disc. J Biomech, 2008, 41(6):1184–1196

    Article  PubMed  PubMed Central  Google Scholar 

  46. Soukane DM, Shirazi-Adl A, Urban JP. Computation of coupled diffusion of oxygen, glucose and lactic acid in an intervertebral disc. J Biomech, 2007,40(12):2645–2654

    Article  PubMed  Google Scholar 

  47. Wu Y, Cisewski S, Sachs BL, et al. Effect of cartilage endplate on cell based disc regeneration: a finite element analysis. Mol Cell Biomech, 2013,10(2):159–182

    PubMed  PubMed Central  Google Scholar 

  48. Jackson AR, Huang CY, Gu WY. Effect of endplate calcification and mechanical deformation on the distribution of glucose in intervertebral disc: a 3D finite element study. Comput Methods Biomech Biomed Engin, 2011,14(2):195–204

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shirazi-Adl A, Taheri M, Urban JP. Analysis of cell viability in intervertebral disc: Effect of endplate permeability on cell population. J Biomech, 2010, 43(7):1330–1336

    Article  CAS  PubMed  Google Scholar 

  50. Malandrino A, Noailly J, Lacroix D. Numerical exploration of the combined effect of nutrient supply, tissue condition and deformation in the intervertebral disc. J Biomech, 2014,47(6):1520–1525

    Article  PubMed  Google Scholar 

  51. Nachemson A, Lewin T, Maroudas A, et al. In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand, 1970,41(6):589–607

    Article  CAS  PubMed  Google Scholar 

  52. DeLucca JF, Cortes DH, Jacobs NT, et al. Human cartilage endplate permeability varies with degeneration and intervertebral disc site. J Biomech, 2016,49(4): 550–557

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ayturk UM, Gadomski B, Schuldt D, et al. Modeling degenerative disk disease in the lumbar spine: a combined experimental, constitutive, and computational approach. J Biomech Eng, 2012,134(10):101003

    Article  PubMed  Google Scholar 

  54. Galbusera F, Schmidt H, Neidlinger-Wilke C, et al. The effect of degenerative morphological changes of the intervertebral disc on the lumbar spine biomechanics: a poroelastic finite element investigation. Comput Methods Biomech Biomed Engin, 2011,14(8):729–739

    Article  PubMed  Google Scholar 

  55. Maquer G, Schwiedrzik J, Huber G, et al. Compressive strength of elderly vertebrae is reduced by disc degeneration and additional flexion. J Mech Behav Biomed Mater, 2015,42:54–66

    Article  PubMed  Google Scholar 

  56. Hussain M, Natarajan RN, An HS, et al. Patterns of height changes in anterior and posterior cervical disc regions affects the contact loading at posterior facets during moderate and severe disc degeneration: a poroelastic C5-C6 finite element model study. Spine, 2010,35(18):E873–E881

    Article  PubMed  Google Scholar 

  57. Kim YE, Goel VK, Weinstein JN, et al. Effect of disc degeneration at one level on the adjacent level in axial mode. Spine, 1991,16(3):331–335

    Article  CAS  PubMed  Google Scholar 

  58. Ruberte LM, Natarajan RN, Andersson GB. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments—a finite element model study. J Biomech, 2009,42(3):341–348

    Article  PubMed  Google Scholar 

  59. Lu YM, Hutton WC, Gharpuray VM. Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine, 1996,21(22):2570–2579

    Article  CAS  PubMed  Google Scholar 

  60. von Forell GA, Nelson TG, Samartzis D, et al. Changes in vertebral strain energy correlate with increased presence of Schmorl’s nodes in multi-level lumbar disk degeneration. J Biomech Eng, 2014,136(6):061002

    Article  PubMed  Google Scholar 

  61. Maidhof R, Alipui DO, Rafiuddin A, et al. Emerging trends in biological therapy for intervertebral disc degeneration. Discov Med, 2012,14(79):401–411

    PubMed  Google Scholar 

  62. Zagra A, Scaramuzzo L, Galbusera F, et al. Biomechanical and clinical study of single posterior oblique cage POLIF in the treatment of degenerative diseases of the lumbar spine. Eur Spine J, 2015, 24(Suppl 7):924–930

    Article  PubMed  Google Scholar 

  63. Erbulut DU, Kiapour A, Oktenoglu T, et al. A computational biomechanical investigation of posterior dynamic instrumentation: combination of dynamic rod and hinged (dynamic) screw. J Biomech Eng, 2014,136(5):051007

    Article  PubMed  Google Scholar 

  64. Chien CY, Kuo YJ, Lin SC, et al. Kinematic and mechanical comparisons of lumbar hybrid fixation using Dynesys and Cosmic systems. Spine (Phila Pa 1976), 2014,39(15):E878–E884

    Article  Google Scholar 

  65. Cegonino J, Calvo-Echenique A, Perez-del Palomar A. Influence of different fusion techniques in lumbar spine over the adjacent segments: A 3D finite element study. J Orthop Res, 2015,33(7):993–1000

    Article  PubMed  Google Scholar 

  66. Faizan A, Goel VK, Biyani A, et al. Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine—a finite element based study. Clin Biomech, 2012,27(3):226–233

    Article  Google Scholar 

  67. Chung TT, Hueng DY, Lin SC. Hybrid Strategy of Two-Level Cervical Artificial Disc and Intervertebral Cage: Biomechanical Effects on Tissues and Implants. Medicine, 2015,94(47):e2048

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhu Q, Gao X, Temple HT, et al. Simulation of biological therapies for degenerated intervertebral discs. J Orthop Res, 2016,34(4):699–708

    Article  CAS  PubMed  Google Scholar 

  69. Gan JC, Ducheyne P, Vresilovic E, et al. Bioactive glass serves as a substrate for maintenance of phenotype of nucleus pulposus cells of the intervertebral disc. J Biomed Mater Res, 2000,51(4): 596–604

    Article  CAS  PubMed  Google Scholar 

  70. Yao J, Turteltaub SR, Ducheyne P. A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads. Biomaterials, 2006,27(3):377–387

    Article  CAS  PubMed  Google Scholar 

  71. Strange DG, Fisher ST, Boughton PC, et al. Restoration of compressive loading properties of lumbar discs with a nucleus implant-a finite element analysis study. Spine J, 2010,10(7):602–609

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-wu Shao.

Additional information

This study was supported by the National Key Research and Development Program of China (No. 2016YFC1100100) and Major Research Plan of National Natural Science Foundation of China (No. 91649204).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Bw., Lv, X., Chen, Sf. et al. Application of Finite Element Analysis for Investigation of Intervertebral Disc Degeneration: from Laboratory to Clinic. CURR MED SCI 39, 7–15 (2019). https://doi.org/10.1007/s11596-019-1993-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-019-1993-7

Key words

Navigation