Skip to main content
Log in

Anti-cancer effects of novel doxorubicin prodrug PDOX in MCF-7 breast cancer cells

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Ac-Phe-Lys-PABC-DOX (PDOX) is a smart doxorubicin (DOX) prodrug designed to decrease toxicities while maintaining the potent anticancer effects of DOX. This study was aimed at elucidating the effectiveness and toxicities of DOX and PDOX in patient-derived MCF-7 breast cancer cells in vitro. The MCF-7 cells were exposed to both PDOX and DOX, and cytotoxicities, cell cycle and P53/P21 signaling alterations were studied. Abundant cathepsin B was found in the MCF-7 cells, and treatment with PDOX and DOX triggered dose- and time-dependent cytotoxicity and resulted in a significant reduction in cell viability. The IC50 of PDOX and DOX was 3.91 and 0.94 μmol/L, respectively. Both PDOX and DOX caused an up-regulation of the P53/P21-related signal pathway, and PDOX significantly increased expression of P53 and caspase 3, and arrested the cell cycle at the G1/G2 phase. As compared with DOX, PDOX reduced toxicities, and it may have different action mechanisms on breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sleeman J, Steeg PS. Cancer metastasis as a therapeutic target. Euro J Cancer, 2010,46(7):1177–1180

    Article  CAS  Google Scholar 

  2. Jemal A, Bray F, Center MM, et al. Global cancer statistics. Ca Cancer J Clin, 2011 (61):69–90

    Google Scholar 

  3. Groner B, Weiss A. Targeting survivin in cancer: novel drug development approaches. Bio Drugs, 2014,28(1):27–39

    CAS  Google Scholar 

  4. Ferreira AL, Matsubara LS, Matsubara BB. Anthracyclineinduced cardiotoxicity. Cardiovasc Hematol Agents Med Chem, 2008,6(4):278–281

    CAS  PubMed  Google Scholar 

  5. Sawyer DB. Anthracyclines and heart failure. N Engl J Med, 2013,368(12):1154–1156

    Article  CAS  PubMed  Google Scholar 

  6. Turk V, Stoka V, Vasiljeva O, et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta, 2012,1824(1):68–88

    Article  CAS  PubMed  Google Scholar 

  7. Rothberg JM, Bailey KM, Wojtkowiak JW, et al. Acidmediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia, 2013,15(10):1125–1137

    PubMed Central  PubMed  Google Scholar 

  8. Raghav N, Singh M. Design, synthesis and docking studies of bischalcones based quinazoline-2(1H)-ones and quinazoline-2(1H)-thiones derivatives as novel inhibitors of cathepsin B and cathepsin H. Eur J Pharm Sci, 2014,54(1):28–39

    Article  CAS  PubMed  Google Scholar 

  9. Dubowchik GM, Firestone RA. Cathepsin B-sensitive dipeptide prodrugs. 1. A model study of structural requrements for efficient release of doxorubicin. Bioorg Med Chem, 1998,8(23):3341–3346

    Article  CAS  Google Scholar 

  10. Dubowchik GM, Mosure K, Knipe JO, et al. Cathepsin B-sensitve dipeptide prodrugs. 2. Models of anticancer drugs paclitaxel (taxol), mitomycin c and doxorubicin. Bioorgan Med Chem, 1998,8(23):3347–3352

    Article  CAS  Google Scholar 

  11. Dubowchik GM, Firestone RA, Padilla L, et al. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug Chem, 2002,13(4):855–869

    Article  CAS  PubMed  Google Scholar 

  12. Shao LH, Liu SP, Hou JX, et al. Cathepsin B cleavable novel prodrug Ac-Phe-Lys-PABC-ADM enhances efficacy at reduced toxicity in treating gastric cancer peritoneal carcinomatosis: an experimental study. Cancer, 2012,118(11):2986–2996

    Article  CAS  PubMed  Google Scholar 

  13. Wang Q, Zhong YJ, Yuan JP, et al. Targeting therapy of hepatocellular carcinoma with doxorubicin prodrug PDOX increases anti-metastatic effect and reduces toxicity: a preclinical study. J Transl Med, 2013,11(1):192

    Article  PubMed Central  PubMed  Google Scholar 

  14. Peng C, Liu XL, Chen C, et al. Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment. Biomaterials, 2011,32(11):2907–2917

    Article  CAS  PubMed  Google Scholar 

  15. Meyer HJ, Wilke H. Treatment strategies in gastric cancer. Dtsch Arztebl Int, 2011,108(41):698–705

    PubMed Central  PubMed  Google Scholar 

  16. Bang YJ, Van Cutsem E, Feyerislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet, 2010,376(9742):687–697

    Article  CAS  PubMed  Google Scholar 

  17. Scott AM, Lee FT, Jones R, et al. A phase I trial of humanized monoclonal antibody A33 in patients with colorectal carcinoma: biodistribution, pharmacokinetics, and quantitative tumor uptake. Clin Cancer Res, 2005,11(13): 4810–4817

    Article  CAS  PubMed  Google Scholar 

  18. Hanaki H, Yamamoto H, Sakane H, et al. An anti-Wnt5a antibody suppresses metastasis of gastric cancer cells in vivo by inhibiting receptor-mediated endocytosis. Mol Cancer Ther, 2012,11(2):298–307

    Article  CAS  PubMed  Google Scholar 

  19. Schmid B, Chung DE, Warnecke A, et al. Albuminbinding prodrugs of camptothecin and doxorubicin with an Ala-Leu-Ala-Leu-linker that are cleaved by cathepsin B: synthesis and antitumor efficacy. Bioconjug Chem, 2007,18(3):702–716

    Article  CAS  PubMed  Google Scholar 

  20. Kawajiri H, Yashiro M, Shinto O, et al. A novel transforming growth factor beta receptor kinase inhibitor, A-77, prevents the peritoneal dissemination of scirrhous gastric carcinoma. Clin Cancer Res, 2008,14(9):2850–2860

    Article  CAS  PubMed  Google Scholar 

  21. Huynh H, Chow PK, Soo KC. AZD6244 and doxorubicin induce growth suppression and apoptosis in mouse models of hepatocellular carcinoma. Mol Cancer Ther, 2007,6(9):2468–2476

    Article  CAS  PubMed  Google Scholar 

  22. Yang S, Nqo VC, Lew GB, et al. AZD6244 (ARRY-142886) enhances the therapeutic efficacy of sorafenib in mouse models of gastric cancer. Mol Cancer Ther, 2009,8(9):2537–2545

    Article  CAS  PubMed  Google Scholar 

  23. Lebrecht D, Geist A, Ketelsen UP, et al. The 6-maleimidocaproyl hydrazone derivative of doxorubicin (DOXO-EMCH) is superior to free doxorubicin with respect to cardiotoxicity and mitochondrial damage. Int J Cancer, 2007,120(4):927–934

    Article  CAS  PubMed  Google Scholar 

  24. Kratz F, Fichtner I, Graeser R. Combination therapy with the albumin-binding prodrug of doxorubicin (INNO-206) and doxorubicin achieves complete remissions and improves tolerability in an ovarian A2780 xenograft model. Invest New Drugs, 2012,30(4):1743–1749

    Article  PubMed  Google Scholar 

  25. Unger C, Haring B, Medinger M, et al. Phase I and pharmacokinetic study of the (6-maleimidocaproyl) hydrazone derivative of doxorubicin. Clin Cancer Res, 2007,13(16):4858–4866

    Article  CAS  PubMed  Google Scholar 

  26. Chen Q, Fei J, Wu L, et al. Detection of cathepsin B, cathepsin L, cystatin C, urokinase plasminogen activator and urokinase plasminogen activator receptor in the sera of lung cancer patients. Oncol Lett, 2011,2(4):693–699

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Abu Ajaj K, Graeser R, Fichtner I, et al. In vitro and in vivo study of an albumin-binding prodrug of doxorubicin that is cleaved by cathepsin B. Cancer Chemother Pharmacol, 2009,64(2):413–418

    Article  CAS  PubMed  Google Scholar 

  28. Schally AV, Naqy A. Cancer chemotherapy based on targeting of cytotoxic peptide. Eur J Endocrinol, 1999,141(1):1–14

    Article  CAS  PubMed  Google Scholar 

  29. Cummings J, McArdle CS. Studies on the in vivo disposition of adriamycin in human tumours which exhibit different responses to the drug. Br J Cancer, 1986,53(6): 835–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Shukla A, Hillegass JM, MacPherson MB, et al. Blocking of ERK1 and ERK2 sensitizes human mesothelioma cells to doxorubicin. Mol Cancer, 2010,9:314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J, 2010,277(1):2–21

    Article  CAS  PubMed  Google Scholar 

  32. Okumura T. Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organs. J Gastroenterol, 2010,45(11):1097–1102

    Article  CAS  PubMed  Google Scholar 

  33. Pritchard AL, Hayward NK. Molecular pathways: mitogenactivated protein kinase pathway mutations and drug resistance. Clin Cancer Res, 2013,19(9):2301–2319

    Article  CAS  PubMed  Google Scholar 

  34. Zhong Y, Liu SP, Firestone RA, et al. Anticancer effects of Ac-Phe-Lys-PABC-doxorubicin via mitochondria-centered apoptosis involving reactive oxidative stress and the ERK1/2 signaling pathway in MGC-803 cells. Oncol Rep, 2013,30(4):1681–1686

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li  (李 雁).

Additional information

These authors contributed equally to this work.

This project was supported by the grants from the Science Fund for Doctorate Mentors by Ministry of Education of China (No. 20120141110042), New Strategies to Treat Peritoneal Carcinomatosis from Hubei Sciences and Technology Bureau, China (No. 2008BCC011, and No. 2060402-542), and the Fundamental Research Fund for the Central Universities of China (No. 2012303020208).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., He, L., Geng, Xf. et al. Anti-cancer effects of novel doxorubicin prodrug PDOX in MCF-7 breast cancer cells. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 521–528 (2014). https://doi.org/10.1007/s11596-014-1309-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-014-1309-x

Key words

Navigation