Skip to main content
Log in

Enhanced expression of aquaporin-9 in rat brain edema induced by bacterial lipopolysaccharides

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

To investigate the role of AQP9 in brain edema, the expression of AQP9 in an infectious rat brain edema model induced by the injection of lipopolysaccharide (LPS) was examined. Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that the expressions of AQP9 mRNA and protein at all observed intervals were significantly increased in LPS-treated animals in comparison with the control animals. Time-course analysis showed that the first signs of blood-brain barrier disruption and the increase of brain water content in LPS-treated animals were evident 6 h after LPS injection, with maximum value appearing at 12 h, which coincided with the expression profiles of AQP9 mRNA and protein in LPS-treated animals. The further correlation analysis revealed strong positive correlations among the brain water content, the disruption of the blood-brain barrier and the enhanced expressions of AQP9 mRNA and protein in LPS-treated animals. These results suggested that the regulation of AQP9 expression may play important roles in water movement and in brain metabolic homeostasis associated with the pathophysiology of brain edema induced by LPS injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Denker BM, Smith BL, Kuhajda FP, et al. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Bio Chem, 1998,263(30):15634–15642

    Google Scholar 

  2. Preston GM, Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA, 1991,88(24):11110–11114

    Article  PubMed  CAS  Google Scholar 

  3. Nielsen S, Kwon TH, Frokiaer J, et al. Regulation and dysregulation of aquaporins in water balance disorders. Journal of Internal Medicine,2007,261(1):53–64

    Article  CAS  Google Scholar 

  4. Fishman RA. Brain Edema. N Engl J Med, 1975,293(14): 706–711

    Article  PubMed  CAS  Google Scholar 

  5. Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci, 2003,4(12):991–1001

    Article  PubMed  CAS  Google Scholar 

  6. Sulyok E, Vajda Z, Doczi T, et al. Aquaporins and the central nervous system. Acta Neurochirurgica, 2004,146(9):955–960

    Article  PubMed  CAS  Google Scholar 

  7. Schrier RW, Chen YC, Cadnapaphornchai MA. From finch to fish to man: role of aquaporins in body fluid and brain water regulation. Neuroscience, 2004, 129(4): 897–904

    Article  PubMed  CAS  Google Scholar 

  8. Tsukaguchi H, Shayakul C, Berger UV, et al. Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem, 1998,273(38):24737–24743

    Article  PubMed  CAS  Google Scholar 

  9. Tsukaguchi H, Weremowicz S, Moton CC, et al. Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am J Physiol, 1999 277: F685–F696

    PubMed  CAS  Google Scholar 

  10. Carbrey JM, Gorelick-Feldman DA, Kozono D, et al. Aquaglyceroporin AQP9: Solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci USA, 2003,100(5):2945–2950

    Article  PubMed  CAS  Google Scholar 

  11. Elkjaer M, Vajda Z, Nejsum LN, et al. Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun, 2000,276(3):1118–1128

    Article  PubMed  CAS  Google Scholar 

  12. Nicchia GP, Frigeri, A, Nico B, et al. Tissue distribution and membrane localization of aquaporin-9 water channel: evidence for sex-linked differences in liver. J Histochem Cytochem, 2001,49(12):1547–1556

    PubMed  CAS  Google Scholar 

  13. Oshio K, Binder DK, Yang B, et al. Expression of aquporin water channels in mouse spinal cord. Neuroscience, 2004,127(3):685–693

    Article  PubMed  CAS  Google Scholar 

  14. Badaut J, Hirt L, Granziera C, et al. Astrocyte-specific expression of aquaporin-9 in mouse brain is increased after transient focal cerebral ischemia. J Cereb Blood Flow Metab, 2001,21(5):477–482

    Article  PubMed  CAS  Google Scholar 

  15. Amiry-Moghaddam M, Lindland H, Zelenin S, et al. Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane. Faseb J, 2005,19(11): 1459–1467

    Article  PubMed  CAS  Google Scholar 

  16. Badaut J, Petit JM, Brunet JF, et al. Distribution of aquaporin 9 in the adult rat brain: preferential expression in catecholaminergic neurons and in glia cells. Neuroscience, 2004,128(1):27–38

    Article  PubMed  CAS  Google Scholar 

  17. Endo M, Jain RK, Witwer B L, et al. Water channel (aquaporin 1) expression and distribution in mammary carcinomas and glioblastomas. Microvasc Res, 1999,58(2): 89–98.

    Article  PubMed  CAS  Google Scholar 

  18. Badaut J, Petut JM, Brunet JF, et al. Aquaglyceroporin 9 in brain catecholaminergic neurons: involvement in glucose metabolism?. Soc Neurosci, 2003,193:13

    Google Scholar 

  19. Chen LH, Cao MH, Yang YJ, et al. Protective effects of nimodipine on brain edema induced by bacilli in rats. Bull Hunan Med Univ, 1997,22:393–396

    CAS  Google Scholar 

  20. Fukui S, Fazzina G, Amorini AM, et al. Differential effects of atrial natriuretic peptide on the brain water and sodium after experimental cortical contusion in the rat. J Cereb Blood Flow Metab, 2003,23:1212–1218

    Article  PubMed  CAS  Google Scholar 

  21. Dwelle TL, Dunkle LM, Blair L. Correlation of cerebrospinal fluid endotoxinlike activity with clinical and laboratory variables in Gram-negative bacterial meningitis in children. J Clin Microbiol, 1987,25(5):856–858

    PubMed  CAS  Google Scholar 

  22. Quagliarello V, Scheld WM. Bacterial meningitis: pathogenesis, pathophysiology, and progress. N Engl J Med, 1992,327:864–872

    PubMed  CAS  Google Scholar 

  23. Gardenfors A Nilsson F, Skagerberg G, et al. Cerebral physiological and biochemical changes during vasogenic brain oedema induced by intrathecal injection of bacterial lipopolysaccharides in piglets. Acta Neurochir, 2002,144: 601–609

    Article  CAS  Google Scholar 

  24. Hu S, Martella A, Anderson WR, et al. Role of cytokines in lipopolysaccharide-induced functional and structural abnormalities of astrocytes. Glia, 1994,10(3):227–234

    Article  PubMed  CAS  Google Scholar 

  25. Koller H, Buchholz J, Siebler M. Bacterial endotoxins impair electrophysiological properties of cultured astrocytes but not of cultured neurons. J Neurol Sci, 1994 124:156–162

    Article  PubMed  CAS  Google Scholar 

  26. Yamamoto N, Sobue K, Fujita M, et al. Differential regulation of aquaporin-5 and -9 expression in astrocytes by protein kinase A. Mol Brain Res, 2002,104(1):96–102

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This project was supported by a grant for Scientific Research Program from the Health Bureau of Henan Province (No. 200202).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Jin, R., Tian, P. et al. Enhanced expression of aquaporin-9 in rat brain edema induced by bacterial lipopolysaccharides. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 29, 150–155 (2009). https://doi.org/10.1007/s11596-009-0203-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-009-0203-4

Key words

Navigation