Skip to main content
Log in

Effective penetration of cell-permeable peptide mimic of tyrosine residue 654 domain of β-catenin into human renal tubular epithelial cells

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Phosphorylation of β-catenin tyrosine residue 654 plays an important role in the epithelial to myofibroblast transition (EMT). Introducing mimic peptide of tyrosine residue 654 domain of β-catenin into cells may influence phosphorylation of β-catenin tyrosine residue 654. To deliver this mimic peptide into renal epithelial cells, we used penetratin as a vector, which is a novel cell permeable peptide, to deliver hydrophilic molecules into cells. A tyrosine 654 residue domain mimic peptide of β-catenin (PM) with fused penetratin was constructed, purified and then detected for the penetration of the mimic peptide into human renal tubular epithelial cells (HK-2). The results showed that purified fusion mimic peptide could efficiently and rapidly translocate into human renal tubular epithelial cells. It is concluded that a cell-permeable peptides mimic of tyrosine residue 654 domain of β-catenin was successfully obtained, which may provide a useful reagent for interfering the human renal tubular epithelial-mesenchymal transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jarver P, Langel U. The use of cell-penetrating peptides as a tool for gene regulation. Drug Discov Today, 2004,9(9):395–402

    Article  PubMed  Google Scholar 

  2. Temsamani J, Vidal P. The use of cell-penetrating peptides for drug delivery. Drug Discov Today, 2004,9(23):1012–1019

    Article  CAS  PubMed  Google Scholar 

  3. Deshayes S, Morris C, Divita G, Heitz F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci, 2005,62(16):1839–1849

    Article  CAS  PubMed  Google Scholar 

  4. Drin G, Cottin S, Blanc E et al. Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem, 2003,278(33):31192–31201

    Article  CAS  PubMed  Google Scholar 

  5. Yap A, Brieher W, Gumbiner B. Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol, 1997,13:119–146

    Article  CAS  PubMed  Google Scholar 

  6. Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol, 2005,17(5):459–465

    Article  CAS  PubMed  Google Scholar 

  7. Huber A, Weis I. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell, 2001,105(3):391–402

    Article  CAS  PubMed  Google Scholar 

  8. Provost E, Rimm D. Controversies at the cytoplasmic face of the cadherin-based adhesion complex. Curr Opin Cell Biol, 1999,11(5):567–572

    Article  CAS  PubMed  Google Scholar 

  9. Kobielak A, Pasolli H, Fuchs E. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol, 2004,6(1):21–30

    Article  CAS  PubMed  Google Scholar 

  10. Huber O, Bierkamp C, Kemler R. Cadherins and catenins in development. Curr Opin Cell Biol, 1996,8:685–691

    Article  CAS  PubMed  Google Scholar 

  11. Lilien J, Balsamo J, Arregui C et al. Turn-off, drop-out: functional state switching of cadherins. Dev Dyn, 2002,224(1):18–29

    Article  CAS  PubMed  Google Scholar 

  12. Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem, 1999,274(51):36734–36740

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol, 2001,159(4):1465–1475

    CAS  PubMed  Google Scholar 

  14. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol, 2004,15(1):1–12

    Article  CAS  PubMed  Google Scholar 

  15. Jane M, Kyoko L, Mitsuhiko I. The cadherin-catenin complex as a focal point of cell adhesion and signalling: new insights from three-dimensional structures. Bio Essays, 2004,26:497–511

    Google Scholar 

  16. Schneider Q, Finnerty R, Martindale Q. Protein evolution: structure-function relationships of the oncogene beta-catenin in the evolution of multicellular animals. J Exp Zoolog B Mol Dev Evol, 2003,295(1):25–44

    Google Scholar 

  17. Xu G, Balsamo J, Lilien J. Continual association of cadherin with beta-catenin requires the non-receptor tyrosine kinase Fer. J Cell Science, 2004,15:136(149)113–119

    Google Scholar 

  18. Horiuchi K Y, Scherle P A, Trzaskos J M et al. Competitive inhibition of MAP kinase activation by a peptide representing the alpha C helix of ERK. Biochemistry, 1998,37(25):8879–8885

    Article  CAS  PubMed  Google Scholar 

  19. Lee J C, Adams J L. Inhibitors of serine/threonine kinases. Curr Opin Biotechnol, 1995,6(6):657–661

    Article  CAS  PubMed  Google Scholar 

  20. McCarthy M. New molecular tool may lead to a new class of drugs. Lancet, 1999,353(9170):2134

    Article  CAS  PubMed  Google Scholar 

  21. Anna E, Maria L, Tamas B et al. VE-Cadherin-Derived Cell-Penetrating Peptide, pVEC with Carrier Functions. Exp Cell Res, 2001,269:237–244

    Article  Google Scholar 

  22. Derossi D, Joliot A H, Chassaing G et al. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem, 1994,269(14):10444–10450

    CAS  PubMed  Google Scholar 

  23. Derossi D, Chassaing G, Prochiantz A. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol, 1998,8(2):84–87

    Article  CAS  PubMed  Google Scholar 

  24. Drin G, Demene H, Temsamani J et al. Translocation of the pAntp peptide and its amphipathic analogue AP-2AL. Biochemistry, 2001,40(6):1824–1834

    Article  CAS  PubMed  Google Scholar 

  25. Binder H, Lindblom G. Charge-dependent translocation of the Trojan peptide penetratin across lipid membranes. Biophys J, 2003,85(2):982–995

    Article  CAS  PubMed  Google Scholar 

  26. Letoha T, Gaal S, Somlai C et al. Membrane translocation of penetratin and its derivatives in different cell lines. J Mol Recognit, 2003,16(5):272–279

    Article  CAS  PubMed  Google Scholar 

  27. Jauknecht R, Shih C, Price P. Rapid and efficient purifition of native histidine tagged protein expressed by recombinant vaccinia virus. Proc Natl Acad Sci USA, 1991,88:8972–8976

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Gang  (徐 钢).

Additional information

This project was supported by a grant from the National Natural Sciences Foundation of China (No. 30370657).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, R., Xu, G., Han, M. et al. Effective penetration of cell-permeable peptide mimic of tyrosine residue 654 domain of β-catenin into human renal tubular epithelial cells. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 27, 630–634 (2007). https://doi.org/10.1007/s11596-007-0602-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-007-0602-3

Key words

Navigation