Skip to main content
Log in

Mussel-inspired Methacrylic Gelatin-dopamine/Ag Nanoparticles/Graphene Oxide Hydrogels with Improved Adhesive and Antibacterial Properties for Applications as Wound Dressings

  • Biomaterial
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A novel strategy was developed to prepare the methacrylic gelatin-dopamine (GelMA-DA)/Ag nanoparticles (NPs)/graphene oxide (GO) composite hydrogels with good biocompatibility, mechanical properties, and antibacterial activity. Mussel-inspired DA was utilized to modify the GelMA molecules, which imparts good adhesive performance to the hydrogels. GO, interfacial enhancer, not only improves mechanical properties of the hydrogels, but also provides anchor sites for loading Ag NPs through numerous oxygen-containing functional groups on the surface. The experimental results show that the GelMA/Ag NPs/GO hydrogels have good biocompatibility, and exhibit a swelling rate of 202±16%, the lap shear strength of 147±17 kPa, and compressive modulus of 136± 53 kPa, in the case of the Ag NPs/GO content of 2 mg/mL. Antibacterial activity of the hydrogels against both gram-negative and gram-positive bacteria is dependent on the Ag NPs/GO content derived from the release of Ag+. Furthermore, the GelMA/Ag NPs/GO hydrogels possess good adhesive ability, which is resistant to highly twisted state when stuck on the surface of pigskin. These results demonstrate promising potential of the GelMA-DA/Ag NPs/GO hydrogels as wound dressings for biomedical applications in clinical and emergent treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen K, Wang F, Liu S, et al. In situ Reduction of Silver Nanoparticles by Sodium Alginate to Obtain Silver-Loaded Composite Wound Dressing with Enhanced Mechanical and Antimicrobial Property[J]. International Journal of Biological Macromolecules, 2020, 148: 501–509

    Article  CAS  PubMed  Google Scholar 

  2. Meftahi A, Samyn P, Geravand SA, et al. Nanocelluloses as Skin Biocompatible Materials for Skincare, Cosmetics, and Healthcare: Formulations, Regulations, and Emerging Applications[J]. Carbohydrate Polymers, 2022, 278: 118956

    Article  CAS  PubMed  Google Scholar 

  3. Radmanesh S, Shabangiz S, Koupaei N, et al. 3 d Printed Bio Polymeric Materials as a New Perspective for Wound Dressing and Skin Tissue Engineering Applications: A Review[J]. Journal of Polymer Research, 2022, 29: 50

    Article  CAS  Google Scholar 

  4. Wang H, Xu Z, Zhao M, et al. Advances of Hydrogel Dressings in Diabetic Wounds[J]. Biomaterials Science, 2021, 9: 1 530–1 546

    Article  CAS  Google Scholar 

  5. Liang Y, He J, Guo B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing[J]. ACS Nano, 2021: 15, 12 687–12 722

    Article  CAS  Google Scholar 

  6. Xiang J, Shen L, Hong Y. Status and Future Scope of Hydrogels in Wound Healing: Synthesis, Materials and Evaluation[J]. European Polymer Journal, 2020, 130: 109609

    Article  CAS  Google Scholar 

  7. Nešović K, Mišković-Stanković V. A Comprehensive Review of the Polymer-Based Hydrogels with Electrochemically Synthesized Silver Nanoparticles for Wound Dressing Applications[J]. Polymer Engineering & Science, 2020, 60: 1 393–1 419

    Article  Google Scholar 

  8. Tang S, Richardson BM, Anseth KS. Dynamic Covalent Hydrogels as Biomaterials to Mimic the Viscoelasticity of Soft Tissues[J]. Progress in Materials Science, 2021, 120: 100 738

    Article  CAS  Google Scholar 

  9. Unagolla JM, Jayasuriya AC. Hydrogel-Based 3 d Bioprinting: A Comprehensive Review on Cell-Laden Hydrogels, Bioink Formulations, and Future Perspectives[J]. Applied Materials Today, 2020, 18: 100 479

    Article  Google Scholar 

  10. Jin J, Yang F, Chen F, et al. Drug Delivery System Based on Nanotubes[J]. Interdisciplinary Materials, 2022, 1: 471–494

    Article  Google Scholar 

  11. Xiao S, Zhao T, Wang J, et al. Gelatin Methacrylate (Gelma)-Based Hydrogels for Cell Transplantation: An Effective Strategy for Tissue Engineering[J]. Stem Cell Rev. Rep., 2019, 15: 664–679

    Article  CAS  PubMed  Google Scholar 

  12. Mogosanu GD, Grumezescu AM. Natural and Synthetic Polymers for Wounds and Burns Dressing[J]. International Journal of Pharmaceutics, 2014, 463: 127–36

    Article  CAS  PubMed  Google Scholar 

  13. Ndlovu SP, Ngece K, Alven S, et al. Gelatin-Based Hybrid Scaffolds: Promising Wound Dressings[J]. Polymers, 2021, 13: 2 959

    Article  CAS  Google Scholar 

  14. Nuutila K, Samandari M, Endo Y, et al. In Vivo Printing of Growth Factor-Eluting Adhesive Scaffolds Improves Wound Healing[J]. Bioactive Materials, 2022, 8: 296–308

    Article  CAS  PubMed  Google Scholar 

  15. Ribeiro JS, Munchow EA, Bordini EAF, et al. Engineering of Injectable Antibiotic-Laden Fibrous Microparticles Gelatin Methacryloyl Hydrogel for Endodontic Infection Ablation[J]. International Journal of Molecular Sciences, 2022, 23: 971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Novais GB, Dos Santos S, Santana RJR, et al. Development of a New Formulation Based on in Situ Photopolymerized Polymer for the Treatment of Spinal Cord Injury[J]. Polymers (Basel), 2021, 13: 4 274

    Article  CAS  Google Scholar 

  17. Baghdasarian S, Saleh B, Baidya A, et al. Engineering a Naturally Derived Hemostatic Sealant for Sealing Internal Organs[J]. Materials Today Bio., 2022, 13: 100 199

    Article  CAS  Google Scholar 

  18. Wang X, Guo J, Zhang Q, et al. Gelatin Sponge Functionalized with Gold/Silver Clusters for Antibacterial Application[J]. Nanotechnology, 2020, 31: 47 904

    Google Scholar 

  19. Zhang R, Han Q, Li Y, et al. High Antibacterial Performance of Electrospinning Silk Fibroin/Gelatin Film Modified with Graphene Oxide-Sliver Nanoparticles[J]. Journal of Applied Polymer Science, 2019, 136: 47 904

    Article  Google Scholar 

  20. Mu Y, Sun Q, Li B, et al. Advances in the Synthesis and Applications of Mussel-Inspired Polymers[J]. Polymer Reviews, 2022: 1–39

  21. Liu F, Liu X, Chen F, et al. Mussel-Inspired Chemistry: A Promising Strategy for Natural Polysaccharides in Biomedical Applications[J]. Progress in Polymer Science, 2021, 123: 101 472

    Article  CAS  Google Scholar 

  22. Costa PM, Learmonth DA, Gomes DB, et al. Mussel-Inspired Catechol Functionalisation as a Strategy to Enhance Biomaterial Adhesion: A Systematic Review[J]. Polymers (Basel), 2021, 13: 3 317

    Article  CAS  Google Scholar 

  23. Hu C, Long L, Cao J, et al. Dual-Crosslinked Mussel-Inspired Smart Hydrogels with Enhanced Antibacterial and Angiogenic Properties for Chronic Infected Diabetic Wound Treatment Via pH-Responsive Quick Cargo Release[J]. Chemical Engineering Journal, 2021, 411: 128 564

    Article  CAS  Google Scholar 

  24. Zhang C, Zhou Y, Han H, et al. Dopamine-Triggered Hydrogels with High Transparency, Self-Adhesion, and Thermoresponse as Skinlike Sensors[J]. ACS Nano, 2021, 15: 1 785–1 794

    Article  CAS  Google Scholar 

  25. Zhang S, Hou J, Yuan Q, et al. Arginine Derivatives Assist Dopamine-Hyaluronic Acid Hybrid Hydrogels to Have Enhanced Antioxidant Activity for Wound Healing[J]. Chemical Engineering Journal, 2020, 392: 123 775

    Article  CAS  Google Scholar 

  26. Liang Y, Zhao X, Hu T, et al. Adhesive Hemostatic Conducting Injectable Composite Hydrogels with Sustained Drug Release and Photothermal Antibacterial Activity to Promote Full-Thickness Skin Regeneration During Wound Healing[J]. Small, 2019, 15: e1 900 046

    Article  Google Scholar 

  27. Zhao Z, Bai P, Du W, et al. An Overview of Graphene and Its Derivatives Reinforced Metal Matrix Composites: Preparation, Properties and Applications[J]. Carbon, 2020, 170: 302–326

    Article  CAS  Google Scholar 

  28. Li W, Wang X, Li M, et al. Construction of Z-Scheme and P-N Heterostructure: Three-Dimensional Porous G-C3n4/Graphene Oxide-Ag/Agbr Composite for High-Efficient Hydrogen Evolution[J]. Applied Catalysis B: Environmental, 2020, 268: 118 384

    Article  CAS  Google Scholar 

  29. Majumder P, Gangopadhyay R. Evolution of Graphene Oxide (Go)-Based Nanohybrid Materials with Diverse Compositions: An Overview[J]. RSC Advances, 2022, 12: 5 686–5 719

    Article  CAS  Google Scholar 

  30. Ghawanmeh AA, Ali GAM, Algarni H, et al. Graphene Oxide-Based Hydrogels as a Nanocarrier for Anticancer Drug Delivery[J]. Nano Research, 2019, 12: 973–990

    Article  CAS  Google Scholar 

  31. Li Y, Wang J, Yang Y, et al. A Rose Bengal/Graphene Oxide/Pva Hybrid Hydrogel with Enhanced Mechanical Properties and Light-Triggered Antibacterial Activity for Wound Treatment[J]. Materials Science & Engineering C-Materials For Biological Applications, 2021, 118: 111 447

    Article  CAS  Google Scholar 

  32. Pooresmaeil M, Namazi H. Preparation and Characterization of Polyvinyl Alcohol/B-Cyclodextrin/Go-Ag Nanocomposite with Improved Antibacterial and Strength Properties[J]. Polymers for Advanced Technologies, 2019, 30: 447–456

    Article  CAS  Google Scholar 

  33. Huang H, He D, Liao X, et al. An Excellent Antibacterial and High Self-Adhesive Hydrogel Can Promote Wound Fully Healing Driven by Its Shrinkage under Nir[J]. Materials Science & Engineering C-Materials For Biological Applications, 2021, 129: 112 395

    Article  CAS  Google Scholar 

  34. Zhou X, Cui HT, Nowicki M, et al. Three-Dimensional-Bioprinted Dopamine-Based Matrix for Promoting Neural Regeneration[J]. ACS Applied Materials & Interfaces, 2018, 10: 8 993–9 001

    Article  CAS  Google Scholar 

  35. Li YM, Meng LH, Hu YR, et al. Suppression Mechanisms on Proliferation of Glioma U251 Cells by FePt Nanoparticles through Intracellular Oxidative Stress[J]. Rare Metals, 2022, 41: 1 202–1 209

    Article  CAS  Google Scholar 

  36. Dat NM, Quan TH, Nguyet DM, et al. Hybrid Graphene Oxide-Immobilized Silver Nanocomposite with Optimal Fabrication Route and Multifunctional Application[J]. Applied Surface Science, 2021, 551: 149 434

    Article  CAS  Google Scholar 

  37. Yang Y, Liang Y, Chen J, et al. Mussel-Inspired Adhesive Antioxidant Antibacterial Hemostatic Composite Hydrogel Wound Dressing Via Photo-Polymerization for Infected Skin Wound Healing[J]. Bioactive Materials, 2022, 8: 341–354

    Article  CAS  PubMed  Google Scholar 

  38. Assmann A, Vegh A, Ghasemi-Rad M, et al. A Highly Adhesive and Naturally Derived Sealant[J]. Biomaterials, 2017, 140: 115–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang S, Liu H, Liao K, et al. Functionalized Go Nanovehicles with Nitric Oxide Release and Photothermal Activity-Based Hydrogels for Bacteria-Infected Wound Healing[J]. ACS Applied Materials & Interfaces, 2020, 12: 28 952–28 964

    CAS  Google Scholar 

  40. Rasoulzadehzali M, Namazi H. Facile Preparation of Antibacterial Chitosan/Graphene Oxide-Ag Bio-Nanocomposite Hydrogel Beads for Controlled Release of Doxorubicin[J]. International Journal of Biological Macromolecules, 2018, 116: 54–63

    Article  CAS  PubMed  Google Scholar 

  41. Cui HT, Zhu W, Huang YM, et al. In Vitro and in vivo Evaluation of 3d Bioprinted Small-Diameter Vasculature with Smooth Muscle and Endothelium[J]. Biofabrication, 2019, 12: 015 004

    Article  Google Scholar 

  42. Gowda AHJ, Bu Y, Kudina O, et al. Design of Tunable Gelatin-Dopamine Based Bioadhesives[J]. International Journal of Biological Macromolecules, 2020, 164: 1 384–1 391

    Article  CAS  Google Scholar 

  43. Aunkor MTH, Raihan T, Prodhan SH, et al. Antibacterial Activity of Graphene Oxide Nanosheet Against Multidrug Resistant Superbugs Isolated from Infected Patients[J]. Royal Society Open Science, 2020, 7: 200 640

    Article  CAS  Google Scholar 

  44. Fan Z, Liu B, Wang J, et al. A Novel Wound Dressing Based on Ag/Graphene Polymer Hydrogel: Effectively Kill Bacteria and Accelerate Wound Healing[J]. Advanced Functional Materials, 2014, 24: 3 933–3 943

    Article  CAS  Google Scholar 

  45. Medici S, Peana M, Nurchi VM, et al. Medical Uses of Silver: History, Myths, and Scientific Evidence[J]. Journal of Medicinal Chemistry, 2019, 62: 5 923–5 943

    Article  CAS  Google Scholar 

  46. Shuai Y, Mao C, Yang M. Protein Nanofibril Assemblies Templated by Graphene Oxide Nanosheets Accelerate Early Cell Adhesion and Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells[J]. ACS Applied Materials & Interfaces, 2018, 10: 31 988–31 997

    Article  CAS  Google Scholar 

  47. Famkar E, Pircheraghi G, Nazockdast H. Effectively Exerting the Reinforcement of Polyvinyl Alcohol Nanocomposite Hydrogel Via Poly(Dopamine) Functionalized Graphene Oxide[J]. Composites Science and Technology, 2022, 217

  48. Cheng YH, Cheng SJ, Chen HH, et al. Development of Injectable Graphene Oxide/Laponite/Gelatin Hydrogel Containing Wharton’s Jelly Mesenchymal Stem Cells for Treatment of Oxidative Stress-Damaged Cardiomyocytes[J]. Colloids Surf B Biointerfaces, 2022, 209: 112 150

    Article  CAS  Google Scholar 

  49. Cha CY, Shin SR, Gao XG, et al. Controlling Mechanical Properties of Cell-Laden Hydrogels by Covalent Incorporation of Graphene Oxide[J]. Small, 2014, 10: 514–23

    Article  CAS  PubMed  Google Scholar 

  50. Olad A, Eslamzadeh M, Mirmohseni A. Physicochemical Evaluation of Nanocomposite Hydrogels with Covalently Incorporated Poly(Vinyl Alcohol) Functionalized Graphene Oxide[J]. Journal of Applied Polymer Science, 2019, 136: 48 025

    Article  Google Scholar 

  51. Wu H, Fei J, Huang K, et al. The Role of Graphene Oxide in Dramatically Enhancing the Mechanical and Photoresponsive Self-Healing Properties of Poly(N, N-Dimethylacrylamide) Hybrid Hydrogels[J]. Materials Research Express, 2021, 8: 105 302

    Article  CAS  Google Scholar 

  52. Zhao R, Jiang L, Zhang P, et al. Graphene Oxide-Based Composite Organohydrogels with High Strength and Low Temperature Resistance for Strain Sensors[J]. Soft Matter, 2022, 18: 1 201–1 208

    Article  CAS  Google Scholar 

  53. Shin SR, Aghaei-Ghareh-Bolagh B, Dang TT, et al. Cell-Laden Microengineered and Mechanically Tunable Hybrid Hydrogels of Gelatin and Graphene Oxide[J]. Advanced Materials, 2013, 25: 6 385–6 391

    Article  CAS  Google Scholar 

  54. Qu J, Zhao X, Liang Y, et al. Antibacterial Adhesive Injectable Hydrogels with Rapid Self-Healing, Extensibility and Compressibility as Wound Dressing for Joints Skin Wound Healing[J]. Biomaterials, 2018, 183: 185–199

    Article  CAS  PubMed  Google Scholar 

  55. Gunes OC, Ziylan Albayrak A. Antibacterial Polypeptide Nisin Containing Cotton Modified Hydrogel Composite Wound Dressings[J]. Polymer Bulletin, 2020, 78: 6 409–6 428

    Article  Google Scholar 

  56. Sharifi S, Islam MM, Sharifi H, et al. Tuning Gelatin-Based Hydrogel Towards Bioadhesive Ocular Tissue Engineering Applications[J]. Bioactive Materials, 2021, 6: 3 947–3 961

    Article  CAS  Google Scholar 

  57. Oh GW, Choi IW, Park WS, et al. Preparation and Properties of Physically Cross-Linked PVA/Pectin Hydrogels Blended at Different Ratios for Wound Dressings[J]. Journal of Applied Polymer Science, 2021, 139: e51 696

    Article  Google Scholar 

  58. Abudula T, Colombani T, Alade T, et al. Injectable Lignin-Co-Gelatin Cryogels with Antioxidant and Antibacterial Properties for Biomedical Applications[J]. Biomacromolecules, 2021, 22: 4 110–4 121

    Article  Google Scholar 

  59. Kang W, Liang J, Liu T, et al. Preparation of Silane-Dispersed Graphene Crosslinked Vinyl Carboxymethyl Chitosan Temperature-Responsive Hydrogel with Antibacterial Properties[J]. International Journal of Biological Macromolecules, 2021, 200: 99–109

    Article  PubMed  Google Scholar 

  60. Zandraa O, Ngwabebhoh FA, Patwa R, et al. Development of Dual Crosslinked Mumio-Based Hydrogel Dressing for Wound Healing Application: Physico-Chemistry and Antimicrobial Activity[J]. International Journal of Pharmaceutics, 2021, 607: 120 952

    Article  CAS  Google Scholar 

  61. Yunoki S, Kohta M, Ohyabu Y, et al. In Vitro Parallel Evaluation of Antibacterial Activity and Cytotoxicity of Commercially Available Silver-Containing Wound Dressings[J]. Chronic Wound Care Management and Research, 2015, 35: 203–211

    Google Scholar 

  62. Haidari H, Bright R, Garg S, et al. Eradication of Mature Bacterial Biofilms with Concurrent Improvement in Chronic Wound Healing Using Silver Nanoparticle Hydrogel Treatment[J]. Biomedicines, 2021, 9: 1 182

    Article  CAS  Google Scholar 

  63. Haidari H, Bright R, Strudwick XL, et al. Multifunctional Ultrasmall Agnp Hydrogel Accelerates Healing of S. Aureus Infected Wounds[J]. Acta Biomater Acta Biomaterualia, 2021, 128: 420–434

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhi Wu  (吴庆知).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by the National Key Research and Development (R&D) Program of China (No.2018YFB1105702)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Hu, Y., Meng, L. et al. Mussel-inspired Methacrylic Gelatin-dopamine/Ag Nanoparticles/Graphene Oxide Hydrogels with Improved Adhesive and Antibacterial Properties for Applications as Wound Dressings. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 39, 512–521 (2024). https://doi.org/10.1007/s11595-024-2907-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-024-2907-5

Key words

Navigation