Skip to main content
Log in

Theoretical Predition of Two-dimensional SiGeP2 by the Global Optimization Method

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The well-developed particle-swarm optimization method together with density functional theory calculations were employed to search lowest-energy geometric structures of two-dimensional (2D) SiGeP2. Two newly found structures (P3m1 and Pmm2) are predicted. The unbiased global search reveals that the two lowest-energy structures are honeycomb lattices with robust dynamical stabilities. A more accurate Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional is used to estimate the band structures of SiGeP2, which indicates that both the structures are semiconductors with indirect band-gap energies 1.80 eV for P3m1 and 1.93 eV for Pmm2, respectively. Using the deformation potential theory, the P3m1-SiGeP2 is predicted to have high electron mobilities (6.4×104 along zigzag direction and 2.9×103 cm2·V−1·s−1 along armchair direction, respectively) and hole electron mobilities (1.0×103 along zigzag direction and 2.5×103 cm2·V−1·s−1 along armchair direction, respectively), which can be comparable with that of phosphorene and show anisotropic character in-plane. In addition, to estimate the elastic limit of SiGeP2, we also calculated the surface tension of SiGeP2 as a function of tensile strain. Our results show that the 2D SiGeP2 may be good candidaticates for applications in nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Cahangirov S, Topsakal M, Aktürk E, et al. Two and One-dimensional Honeycomb Structures of Silicon and Germanium[J]. Phys. Rev. Lett., 2009, 102(23): 236 804

    Article  CAS  Google Scholar 

  2. Yang K, Cahangirov S, Cantarero A, et al. Thermoelectric Properties of Atomically Thin Silicene and Germanene Nanostructures[J]. Phys. Rev. B, 2014, 89(12): 125 403

    Article  Google Scholar 

  3. Feng B, Ding Z, Meng S, et al. Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111)[J]. Nano. Lett., 2012, 12(7): 3507–3511

    Article  CAS  Google Scholar 

  4. Jin C, Lin F, Suenaga K, et al. Fabrication of a Freestanding Boron Nitride Single Layer and Its Defect Assignments[J]. Phys. Rev. Lett, 2009, 102(19): 195 505

    Article  Google Scholar 

  5. Morscher M, Corso M, Greber T, et al. Formation of Single Layer h-BN on Pd(111)[J]. Susc., 2006, 600(16): 3280–3284

    CAS  Google Scholar 

  6. He T Y, Li Y J, Zhou Z F, et al. Synthesis of Large-area Uniform MoS2 Films by Substrate-moving Atmospheric Pressure Chemical Vapor Deposition: from Monolayer to Multilayer[J]. 2D Mat., 2019, 6(2): 025 030

    Article  CAS  Google Scholar 

  7. Zhang K, Zheng Y, Lan Y, et al. Effects of Waterborne Elastic Polyester with Different Compositions on the Properties and Compatibility of Maize Starch[J]. J.Wuhan.Unvi.Technol. -Mat Sci. Ed., 2021, 36: 465471

    Google Scholar 

  8. Lu W, Nan H, Hong J, et al. Plasma-Assisted Fabrication of Monolayer Phosphorene and Its Raman Characterization[J]. Nano. Res., 2014, 7: 853–859

    Article  CAS  Google Scholar 

  9. Hwang E, Das Sarma S. Single-Particle Relaxation Time Versus Transport Scattering Time in a Two-Dimensional Graphene Layer[J]. Phys. Rev. B, 2008, 77: 195 412

    Article  Google Scholar 

  10. Xia F, Farmer D B, Lin Y M, et al. Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature[J]. Nano Lett., 2010, 10: 715–718

    Article  CAS  Google Scholar 

  11. Liao L, Lin Y C, Bao M, et al. High-Speed Graphene-Transistors with a Self-Aligned Nanowire Gate[J]. Nature, 2010, 467: 305–308

    Article  CAS  Google Scholar 

  12. Kedzierski J, Hsu P. Epitaxial Graphene Transistors on SIC Substrates[J]. Ieee. Trans.Elec. Dev., 2008, 55: 2078–2085

    Article  CAS  Google Scholar 

  13. Sun Z, Chang H. Graphene and Graphene-like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology[J]. Acs Nan., 2014, 8: 4133–4156

    Article  CAS  Google Scholar 

  14. Vogt P, Padova P D, Quaresima C, et al. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon[J]. Phys. Rev. Lett., 2012, 108: 155 501

    Article  Google Scholar 

  15. Moras P, Mentes TO, Polina M, et al. Coexistence of Multiple Silicene Phases in Silicon Grown on Ag(111) [J]. J. Phys., 2014, 26: 24 727 950

    Google Scholar 

  16. Meng L, Wang Y, Zhang L, et al. Buckled Silicene Formation on Ir(111)[J]. Nano Lett., 2013, 13: 685–690

    Article  CAS  Google Scholar 

  17. Dávila M, Xian L, Cahangirov S, et al. Germanene: A Novel Two-dimensional Germanium Allotrope Akin to Graphene and Silicene[J]. New J Phys., 2014, 16: 095 002

    Article  Google Scholar 

  18. Yasaei P, Kumar B, Foroozan T, et al. High-Quality Black Phosphorus Atomic Layers by Liquid-Phase Exfoliation[J]. Adv. Mater., 2015, 27: 1887–1892

    Article  CAS  Google Scholar 

  19. Brent J R, Savjani N, Lewis E A, et al. Production of Few-Layer Phosphorene by Liquid Exfoliation of Black Phosphorus[J]. Chem. Commun., 2014, 50: 13338–13341

    Article  CAS  Google Scholar 

  20. Guan J, Liu D, Zhu Z, et al. Two-dimensional Phosphorus Carbide Competition between sp2 and sp3 Bonding[J]. Nano Lett., 2016, 16: 3247–3252

    Article  CAS  Google Scholar 

  21. Yu T, Zhao Z, Sun Y, et al. Two-dimensional PC6 with Direct Band Gap and Anisotropic Carrier Mobility[J]. J. Am. Chem. Soc., 2019, 141: 1599–1605

    Article  CAS  Google Scholar 

  22. Jing Y, Ma Y, Li Y, et al. GeP3: A Small Indirect Band Gap 2D Crystal with High Carrier Mobility and Strong Interlayer Quantum Confinement[J]. Nano Lett., 2017, 17: 1833–1838

    Article  CAS  Google Scholar 

  23. Huang B, Zhuang H L, Yoon M, et al. Highly Stable Two-dimensional Silicon Phosphides: Different Stoichiometries and Exotic Electronic Properties[J]. Phys Rev B, 2015, 91: 121 401

    Article  Google Scholar 

  24. Li L, Wang W, Gong P, et al. 2D GeP: An Unexploited Low-Symmetry Semiconductor with Strong In-Plane Anisotropy[J]. Adv. Mater., 2018, 30: 1 706 771

    Article  Google Scholar 

  25. Barreteau C, Michon B, Besnard C, et al. High-pressure Melt Growth and Transport Properties of SiP, SiAs, GeP, and GeAs 2D Layered Semiconductors[J]. J. Cryst. Growth, 2016, 443: 75–80

    Article  CAS  Google Scholar 

  26. Gao B, Gao P, Lu S, et al. Interface Structure Prediction via CALYPSO Method[J]. Sci. Bull., 2019, 64: 301–309

    Article  CAS  Google Scholar 

  27. Wang Y, Lv J, Zhu L, et al. Crystal Structure Prediction Via Particle-swarm Optimization[J]. Bull. M.SCI, 2010, 82: 094 116

    Google Scholar 

  28. Blochl P, Forst C, Schimpl J. Projector Augmented Wave Method: Ab Initio Molecular Dynamics with Full Wave Functions[J]. Phys. Rev. B, 2003, 26: 33–41

    CAS  Google Scholar 

  29. Kresse G, Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method[J]. Phys. Rev. B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  30. Kresse G. Ab Initio Molecular Dynamics for Liquid Metals[J]. J. N. Sol, 1995, 193: 222–229

    Google Scholar 

  31. Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  32. Heyd J, Scuseria G E, Ernzerhof M. Hybrid Functionals Based on a Screened Coulomb Potential[J]. J. Chem. Phys., 2003, 118: 8207–8215

    Article  CAS  Google Scholar 

  33. Togo A, Oba F, Tanaka I. First-principles Calculations of the Ferroelastic Transition between Rutile-type and CaCl2-type SiO2 at High Pressures[J]. Phys. Rev. B, 2008, 78: 134 106

    Article  Google Scholar 

  34. Yang L M, Bačić V, Popov I A, et al. Two-Dimensional Cu2Si Monolayer with Planar Hexacoordinate Copper and Silicon Bonding[J]. J. Am. Chem. Soc., 2015, 137: 2757–2762

    Article  CAS  Google Scholar 

  35. Wang Y, Li F, Li Y, et al. Semi-metallic Be5C2 Monolayer Global Minimum with Quasi Planar Pentacoordinate Carbons and Negative Poissons Ratio[J]. Nat. Commun., 2016, 7: 11 488

    Article  CAS  Google Scholar 

  36. Mouhat F, Coudert F X. Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems[J]. Phys. Rev. B, 2014, 90: 224 104

    Article  Google Scholar 

  37. Wang L, Kutana A, Zou X, et al. Electro-mechanical Anisotropy of Phosphorene[J]. Nan., 2015, 7: 9746–9751

    CAS  Google Scholar 

  38. Arushanov E, Ivanenbo L, Lange H, et al. Hole Mobility in Cr-doped p-type Beta-FeSi2 Single Crystals[J]. Physica Status Solidi B. Bascic Research, 1998, 210: 187–194

    Article  CAS  Google Scholar 

  39. Xi J, Long M, Tang L, et al. First-principles Prediction of Charge Mobility in Carbon and Organic Nanomaterials[J]. Nano, 2012, 4: 4348–4369

    CAS  Google Scholar 

  40. Qiao J S, Kong X H, Hu Z X, et al. High-mobility Transport Anisotropy and Linear Dichroism in Few-layer Black Phosphorus[J]. Nat. Com., 2014, 5: 4 475

    Article  CAS  Google Scholar 

  41. Ghosh B, Puri S, Agarwal A. SnP3: A Previously Unexplored Two-Dimensional Material[J]. J. Phys. Chem. C, 2018, 122: 18185–18191

    Article  CAS  Google Scholar 

  42. Sun S, Meng F, Wang H, et al. Novel Two- Dimensional Semiconductor SnP3: High Stability, Tunable Bandgaps and High Carrier Mobility Explored Using First-Principles Calculations[J]. J. M. Chem. A, 2018, 6: 11890–11897

    Article  CAS  Google Scholar 

  43. Lu N, Zhuo Z, Guo H, et al. CaP3: A New Two-Dimensional Functional Material with Desirable Band Gap and Ultrahigh Carrier Mobility[J]. J. Phys. Chem. Lett., 2018, 9: 1728–1733

    Article  CAS  Google Scholar 

  44. Z Zhang, Y Yang, E S Penev, et al. Elasticity, Flexibility, and Ideal Strength of Borophenes[J]. Adv. F. Mater., 2017, 27: 1 605 059

    Article  Google Scholar 

  45. Li T. Ideal Strength and Phonon Instability in Single-Layer MoS2[J]. Phys. Rev. B, 2012, 85: 235 407

    Article  Google Scholar 

  46. Lintao WU, Zehua ZHOU, Xin ZHANG, et al. Influence of Heat Treatment on Plasma Sprayed FeCrMoCBY Amorphous Coatings[J]. Journal of Wuhan University of Technology -Materials Science Edition, 2021, 36(5): 761–765

    Article  CAS  Google Scholar 

  47. Wei Q, Peng X. Superior Mechanical Flexibility of Phosphorene and Few-layer Black Phosphorus[J]. Appl. Phys. Lett., 2014, 104: 251 915

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunying Pu  (濮春英).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by Henan Joint Funds of the National Natural Science Foundation of China (No. U1904179), the National Natural Science Foundation of China (No. 51501093), and the Key Scientific and Technological Project of Technology Department of Henan Province of China (No. 212102210448)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, X., Yu, J., Zhou, D. et al. Theoretical Predition of Two-dimensional SiGeP2 by the Global Optimization Method. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 1010–1016 (2023). https://doi.org/10.1007/s11595-023-2789-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2789-y

Key words

Navigation