Skip to main content
Log in

Structure, Formation, Properties, and Application of Calcium and Magnesium Silicate Hydrates System—A Review

  • Cementitious Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In order to expand the advantages of strong durability and high compressive strength of calcium silicate hydrates(C-S-H), at the same time to make up for the poor early mechanical strength of magnesium silicate hydrates (M-S-H), we present the features and advantages of C-S-H and M-S-H and a comprehensive review of the progress on CaO-MgO-SiO2-H2O. Moreover, we systematically describe natural calcium and magnesium silicate minerals and thermodynamic properties of CaO-MgO-SiO2-H2O. The effect of magnesium on C-S-H and calcium on M-S-H is summarized deeply; the formation and structural feature of CaO-MgO-SiO2-H2O is also explained in detail. Finally, the development of calcium and magnesium silicate hydrates in the future is pointed out, and the further research is discussed and estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lothenbach B, Nonat A. Calcium Silicate Hydrates: Solid and Liquid Phase Composition[J]. Cem. Concr. Res., 2015, 78: 57–70

    Article  CAS  Google Scholar 

  2. Jennings H M. A Model for the Microstructure of Calcium Silicate Hydrate in Cement Paste[J]. Cem. Concr. Res., 2000, 30: 101–116

    Article  CAS  Google Scholar 

  3. Richardson I G. The Calcium Silicate Hydrates[J]. Cem. Concr. Res., 2008, 38: 137–158

    Article  CAS  Google Scholar 

  4. Hamilton A, Hall C. Physicochemical Characterization of a Hydrated Calcium Silicate Board Material[J]. J. Build. Phys., 2005, 29: 9–19

    Article  CAS  Google Scholar 

  5. Meducin F, Bresson B, Lequeux N, et al. Calcium Silicate Hydrates Investigated by Solid-state High Resolution 1H and 29Si Nuclear Magnetic Resonance[J]. Cem. Concr. Res., 2007, 37: 631–638

    Article  CAS  Google Scholar 

  6. Bonaccorsi E, Merlino S. Modular Microporous Minerals: Cancrinitedavyne Group and C-S-H Phases[J]. Rev. Min. Geochem., 2005, 57: 241–290

    Article  CAS  Google Scholar 

  7. Richardson I G. The Nature of C-S-H in Hardened Cements[J]. Cem. Concr. Res., 1999, 29: 1131–1147

    Article  CAS  Google Scholar 

  8. Bonen D, Cohen M D. Magnesium Sulfate Attack on Portland Cement Paste-II. Chemical and Mineralogical Analyses[J]. Cem. Concr. Res., 1992, 22: 707–718

    Article  CAS  Google Scholar 

  9. Dauzeres A, Le Bescop P, Cau-Dit-Coumes C, et al. On the Physicochemical Evolution of Low-pH and CEM I Cement Pastes Interacting with Callovo-Oxfordian Pore Water Under Its in Situ CO2 Partial Pressure[J]. Cem. Concr. Res., 2014, 58: 76–88

    Article  CAS  Google Scholar 

  10. Dauzeres A, Achiedo G, Nied D, et al. Magnesium Perturbation in Low-pH Concretes Placed in Clayey Environment-Solid Characterizations and Modeling[J]. Cem. Concr. Res., 2016, 79: 137–150

    Article  CAS  Google Scholar 

  11. Calvo G, Garcia J L, Hidalgo A, et al. Development of Low-pH Cementitious Materials for HLRW Repositories: Resistance against Ground Waters Aggression[J]. Cem. Concr. Res., 2010, 40: 1290–1297

    Article  Google Scholar 

  12. Weerdt D K, Justnes H. The Effect of Sea Water on the Phase Assemblage of Hydrated Cement Paste[J]. Cem. Concr. Compos., 2015, 55: 215–222

    Article  Google Scholar 

  13. Jakobsen U H, Weerdt D K, Geikere M R. Elemental Zonation in Marine Concrete[J]. Cem.Concr.Res., 2016, 85: 12–27

    Article  CAS  Google Scholar 

  14. Jenni A, Mader U, Lerouge C, et al. In Situ Interaction between Different Concretes and Opalinus Clay[J]. Phys. Chem. Earth. Parts A/B/C, 2014, 70: 71–83

    Article  Google Scholar 

  15. Lerouge C, Gaboreau S, Grangeon S, et al. In Situ Interactions between Opalinus Clay and Low Alkali Concrete[J]. Phys. Chem. Earth. Parts A/B/C, 2017, 99: 3–21

    Article  Google Scholar 

  16. Mäder U, Jenni A, Lerouge C, et al. 5-year Chemico-physical Evolution of Concrete-claystone Interfaces[J]. Swiss J. Geosciences., 2017, 110: 307–327

    Article  Google Scholar 

  17. Kunther W, Lothenbach B, Scrivener K L. Deterioration of Mortar Bars Immersed in Magnesium Containing Sulfate Solutions[J]. Mater. Struct., 2013, 46: 2003–2011

    Article  CAS  Google Scholar 

  18. De Weerdt K, Justnes H. The Effect of Sea Water on the Phase Assemblage of Hydrated Cement Paste[J]. Cem. Concr. Compos., 2015, 55: 215–222

    Article  CAS  Google Scholar 

  19. Mojumder S C, Raki L. Preparation and Properties of Calcium Silicate Hydrate-poly(vinyl alcohol) Nanocomposite Materials[J]. J. Therm. Anal. Calorim., 2005, 82(1): 89–95

    Article  Google Scholar 

  20. Yao W, He L. Research Progress on Nanostructure of Calcium Siliate Hydrate[J]. J. Chin. Ceram. Soc., 2010, 38(4): 754–761 (in Chinese)

    CAS  Google Scholar 

  21. Brew D R M, Glasser F P. Synthesis and Characterisation of Magnesium Silicate Hydrate gels[J]. Cem. Concr. Res., 2005, 35: 85–98

    Article  CAS  Google Scholar 

  22. Du Y C, Wang X K, Wu J S, et al. Mg3Si4O10(OH)2 and MgFe2O4in Situ Grown on Diatomite: Highly Efficient Adsorbents for the Removal of Cr(VI)[J]. Micropor. Mesopor. Mat., 2018, 271: 83–91

    Article  CAS  Google Scholar 

  23. Jadamba T, Kiyoshi O, Kenneth J D M. Formation of Layered Magnesium Silicate during the Aging of Magnesium Hydroxide-Silica Mixtures[J]. J. Am. Ceram. Soc., 1998, 81(3): 754–56

    Google Scholar 

  24. Speakman K, Majumdar A J. Synthetic ‘Deweylite’[J]. Mineral. Mag., 1971, 38: 225–34

    Article  CAS  Google Scholar 

  25. Golubeva O Y, Korytkova E N, Gusarov V V. Hydrothermal Synthesis of Magnesium Silicate Montmorillonite for Polymer-clay Nanocomposites[J]. Russ. J. Appl. Chem., 2005, 78(1): 26–32

    Article  CAS  Google Scholar 

  26. Hipedinger N, Scian A, Aglietti E. Magnesia-phosphate Bond for Cold-setting Cordierite-based Refractories[J]. Cem. Concr. Res., 2002, 32(5): 675–682

    Article  CAS  Google Scholar 

  27. Nied D, Enemark R K, L’hoptal E, et al. Properties of Magnesium Silicate Hydrates (MSH)[J]. Cem. Concr. Res., 2016, 79: 323–332

    Article  CAS  Google Scholar 

  28. Roose C, Grangeon S, Blanc P, et al. Crystal Structure of Magnesium Silicate Hydrates(MSH): the Relation with 2: 1 Mg-Si Phyllosilicates[J]. Cem. Concr. Res., 2015, 73: 228–237

    Article  Google Scholar 

  29. Walling S A, Kinoshta H, Bernal S A, et al. Structure and Properties of Binder Gels Formed in the System Mg(OH)2-SiO2-H2O for Immobilization of Magnox Sludge[J]. Dalton. Trans., 2015, 44: 8126–8137

    Article  CAS  Google Scholar 

  30. Li Z, Zhang T, Hu J, et al. Characterization of Reaction Products and Reaction Process of MgO-SiO2-H2O System at Room Temperature[J]. Constr. Build. Mater., 2014, 61: 252

    Article  Google Scholar 

  31. Szczerba J, Prorok R, Sniezek E, et al. Influence of Time and Temperature on Ageing and Phases Synthesis in the MgO-SiO2-H2O System[J]. Thermochim. Acta, 2013, 567: 57–64

    Article  CAS  Google Scholar 

  32. Abbdel-Gawwad H A, El-Aleem S A, Amer A A, et al. Combined Impact of Silicate-amorphicity and MgO-reactivity on the Performance of Mg-silicate Cement[J]. Constr. Build. Mater., 2018, 189: 78–85

    Article  Google Scholar 

  33. Richardson I G. Tobermorite/jennite- and Tobermorite/Calcium Hydroxide-based Models for the Structure of C-S-H: Applicability to Hardened Pastes of Tricalcium Silicate, β-dicalcium Silicate, Portland Cement, and Blends of Portland Cement with Blast-furnace Slag, Metakaolin, or Silica Fume[J]. Cem. Concr. Res., 2004, 34(9): 1733–1777

    Article  CAS  Google Scholar 

  34. Taylor H F W. Nanostructure of C-S-H: Current Status[J]. Adv. Cem. Based. Mater., 1993, 1(1): 38–46

    Article  CAS  Google Scholar 

  35. TAYLOR H F W. Cement Chemistry, 2nd ed[M]. London: Thomas Telford, 1997

    Book  Google Scholar 

  36. Bonaccorsi E, Merlino S, Armbruster T. The Real Structure of Tobermorite 11 Å: Normal and Anomalous Forms, OD Character and Polytypic Modifications[J]. Eur. J. Mineral., 2001, 13: 577–590

    Article  Google Scholar 

  37. Renaudin G, Russias J, Leroux F, et al. Structural Characterization of C-S-H and C-A-S-H Samples-Part I: Long-Range Order Investigated by Rietveld Analyses[J]. J. Solid. State. Chem., 2009, 182(12): 3312–3319

    Article  CAS  Google Scholar 

  38. Renaudin G, Russias J, Leroux F, et al. Structural Characterization of C-S-H and C-A-S-H Samples-Part II: Local Environment Investigated by Spectroscopic Analyses[J]. J. Solid. State. Chem., 2009, 182(12): 3320–3329

    Article  CAS  Google Scholar 

  39. Richardson I G. Model Structures for C-(A)-S-H(I)[J]. Acta Crystallogr B, 2014, 70: 903–923

    Article  CAS  Google Scholar 

  40. Richardson I G. Tobermorite/jennite- and Tobermorite/calcium Hydroxide-based Models for the Structure of C-S-H: Applicability to Hardened Pastes of Tricalcium Silicate, β-dicalcium Silicate, Portland Cement, and Blends of Portland Cement with Blast-Furnace Slag, Metakaolin, or Silica Fume[J]. Cem. Concr. Res., 2004, 34(9): 1733–1777

    Article  CAS  Google Scholar 

  41. Li B, Chen W. Development on Molecular Structure of Calcium Silicate Hydrate Gel[J]. J. Chin. Ceram. Soc., 2019, 47(8): 1097–1099 (in Chinese)

    Google Scholar 

  42. Bernard E, Lothenbach B, Chlihlique C, et al. Characterization of Magnesium Silicate Hydrate (M-S-H)[J]. Cem. Concr. Res., 2019, 116: 309–330

    Article  CAS  Google Scholar 

  43. Lerouge C, Gaboreau S, Claret F, et al. In Situ Interactions between Opalinus Clay and Low Alkali Concrete[J]. Phys. Chem. Earth, Parts A/B/C, 2017, 99: 3–21

    Article  Google Scholar 

  44. Tonelli M, Martini F, Calucci L, et al. Traditional Portland Cement and MgO-based Cement: a Promising Combination?[J]. Phys. Chem. Earth., 2017, 99: 158–167

    Article  Google Scholar 

  45. Bernard E, Lothenbach B, Cau-Dit-Coumes C, et al. Magnesium and Calcium Silicate Hydrates, Part I: Investigation of the Possible Magnesium Incorporation in Calcium Silicate Hydrate (C-S-H) and of the Calcium in Magnesium Silicate Hydrate (M-S-H)[J]. App. Geochem. 2018, 89: 229–242

    Article  CAS  Google Scholar 

  46. Bernard E, Dauzères A, Lothenbach B. Magnesium and Calcium Silicate Hydrates, Part II: Mg-exchange at the Interface “low-pH” Cement and Magnesium Environment Studied in a C-S-H and M-S-H Model System[J]. App. Geochem., 2018, 89: 210–218

    Article  CAS  Google Scholar 

  47. Wei J X, Yu Q, Zhang W, et al. Reaction Products of MgO and Microsilica Cementitious Materials at Different Temperatures[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(4): 745–748

    Article  CAS  Google Scholar 

  48. Hans Wedepohl K. The Composition of the Continental Crust[J]. Mineral Mag, 1994, 58(7): 1217–1232

    Google Scholar 

  49. Jia Y. Effect of Na-HMP and CaO on the Reaction Mechanism of MgO-SiO2-H2O System[D]. Dalian: Dalian University of Technology, 2017 (in Chinese)

    Google Scholar 

  50. Hamid S A. The Crystal Structure of 11 Å Natural Tobermorite Ca2.25[-Si3O7.5(OH)1.5]·1H2O[J]. Z. Kristallogr., 1981, 154: 189–198

    CAS  Google Scholar 

  51. Yu P, Kirkpatrick R J. Thermal Dehydration of Tobermorite and Jennite[J]. Concr. Sci. Eng., 1999, 1: 185–191

    Google Scholar 

  52. Black L, Stumm A, Garbev K, et al. X-ray Photoelectron Spectroscopy of Aluminium-substituted Tobermorite[J]. Cem. Concr. Res., 2005, 35: 51–55

    Article  CAS  Google Scholar 

  53. Coleman N J. Synthesis, Structure and Ion Exchange Properties of 11 Å Tobermorites from Newsprint Recycling Residue[J]. Mater. Res. Bull., 2005, 40: 2000–2013

    Article  CAS  Google Scholar 

  54. Maeshima T, Noma H, Sakiyama M, et al. Natural 1.1 and 1.4 nm Tobermorites from Fuka, Okayama, Japan: Chemical Analysis, Cell Dimensions, 29Si NMR and Thermal Behavior[J]. Cem. Concr. Res., 2003, 33: 1515–1523

    Article  CAS  Google Scholar 

  55. Bonaccorsi E, Merlino S, Kampf A R. The Crystal Structure of Tobermorite 14 Å (Plombierite), a C-S-H Phase[J]. J. Am. Ceram. Soc., 2005, 88: 505–512

    Article  CAS  Google Scholar 

  56. Kumar A, Walder B J, Mohamed A K, et al. The Atomic-Level Structure of Cementitious Calcium Silicate Hydrate[J]. J. Phys.Chem.C 2017, 121: 17188–17196

    Article  CAS  Google Scholar 

  57. Du P, Chen W C, Wang H Z. Magnesium Silicates and Its Applications[J]. J. Salt. Chem. Indus., 2013, 421–6 (in Chinese)

  58. Bowen N, Tuttle O. The System MgO-SiO2-H2O[J]. Geolog. Soc. Amer. Bull., 1949, 60(3): 439–460

    Article  CAS  Google Scholar 

  59. Xu J X. Preparation and Characterization of High Dispersion Hexagonal Magnesium Hydroxide[D]. Shanghai: East China Normal University, 2018 (in Chinese)

    Google Scholar 

  60. Cailleriej D D L, Kermarec M, Clause O. 29Si NMR Observation of an Amorphous Magnesium Silicate Formed during Impregnation of Silica with Mg(II) in Aqueous Solution[J]. J. Phys. Chem., 1995, 99(47): 17273–17281

    Article  Google Scholar 

  61. Tonelli M, Martini F, Calucci L, et al. Structural Characterization of Magnesium Silicate Hydrate: towards the Design of Eco-sustainable Cements[J]. Dalton. T., 2016, 45(8): 3294–3304

    Article  CAS  Google Scholar 

  62. Mackenzie K J D, Brown L W M, Ranchod P, et al. Silicate Bonding of Inorganic Materials[J]. J. Mater. Sci., 1991, 26(3): 763–768

    Article  CAS  Google Scholar 

  63. Conway B. Ion Hydration Co-sphere Interactions in the Double-layer and Ionic Solutions[J]. J. Electroanal. Chem. Interfacial. Electrochem., 1981, 123: 81–94

    Article  CAS  Google Scholar 

  64. Qian G R, Li A M, Xu G L, et al. Hydrothermal Products of the C3MS2-C12A7-MgO System[J]. Cem. Concr. Res., 1997, 27(12): 1791–1797

    Article  CAS  Google Scholar 

  65. Vespa B, Othenbach B L, Dähn R, et al. Characterisation of Magnesium Silicate Hydrate Phases (M-S-H): A Combined Approach Using Synchrotron-based Absorption Spectroscopy and ab initio Calculations[J]. Cem. Concr. Res., 2018, 109: 175–183

    Article  CAS  Google Scholar 

  66. Damidot D, Lothenbach B, Herfort D, et al. Thermodynamics and Cement Science[J]. Cem. Concr. Res., 2011, 41(7): 679–695

    Article  CAS  Google Scholar 

  67. Sun L, Zhu Y. A Serial Two-stage Viscoelastic-viscoplastic Constitutive Model with Thermodynamical Consistency for Characterizing Time-dependent Deformation Behavior of Asphalt Concrete Mixtures[J]. Constr. Build. Mater., 2013, 40: 584–595

    Article  Google Scholar 

  68. Kulik D, Wagner T, Dmytrieva S V, et al. GEM-Selektor Geochemical Modeling Package: Revised Algorithm and GEMS3K Numerical Kernel for Coupled Simulation Codes[J]. Comput. Geochem., 2013, 17: 1–24

    Google Scholar 

  69. Thoenen T, Hummel W, Berner U, et al. The PSI/Nagra Chemical Thermodynamic Database 12/07[R]. PSI Report 14-04, Villigen PSI, 2014

  70. Li Z H. Reaction Mechanisms and Application Study of MgO-SiO2-H2O Cementitious System[D]. Guangzhou: South China University of Technology, 2015 (in Chinese)

    Google Scholar 

  71. Lothbach B, Nied D, L’hôpital E, et al. Magnesium and Calcium Silicate Hydrates[J]. Cem. Concr. Res., 2015, 77: 60–68

    Article  Google Scholar 

  72. Chiang W S, Ferraro G, Fratini E, et al. Multiscale Structure of Calcium- and Magnesiumsilicate-hydrate Gels[J]. J. Mater. Chem. A, 2014, 2: 12991–12998

    Article  CAS  Google Scholar 

  73. Xu G L, Lai Z Y, Qian G R, et al. Thermodynamic Study on CaO-MaO-SiO2-H2O System[J]. J. Southwest.Inst. Technol., 1999, 14(3): 1–5 (in Chinese)

    Google Scholar 

  74. Fan F Z, Qian G R, Lai Z Y, et al. Competition Mechanism of Reactant and Transition Mechanism of Resultant of CaO-MaO-SiO2-H2O Hydrothermal System[J]. J. Southwest. Inst. Technol., 2000, 15(4): 1–4 (in Chinese)

    Google Scholar 

  75. Fan F Z, Qian G R, Lai Z Y, et al. Thermodynamic Study on CaO-MaO-SiO2-H2O System[J]. B. Chin. Ceram. Soc., 2001, 20(1): 18–23 (in Chinese)

    CAS  Google Scholar 

  76. Lu D Y, Zheng Y Z, Liu Y D, et al. Effect of Light-burned Magnesium Oxide on Deformation Behavior of Geopolymer and Its Mechanism[J]. J. Chin. Ceram. Soc., 2012, 40(11): 1625–1630

    CAS  Google Scholar 

  77. Bernard E, Lothenbach B, Rentsch D, et al. Formation of Magnesium Silicate Hydrates (M-S-H)[J]. Phys. Chem. Earth, Parts A/B/C, 2017, 99: 142–157

    Article  Google Scholar 

  78. Kulik D A. Improving the Structural Consistency of CSH Solid Solution Thermodynamic Models[J]. Cem. Concr. Res., 2011, 41: 477–495

    Article  CAS  Google Scholar 

  79. Bernard E, Lothenbach B, Goff F L, et al. Effect of Magnesium on Calcium Silicate Hydrate (C-S-H)[J]. Cem. Concr. Res., 2017, 97: 61–72

    Article  CAS  Google Scholar 

  80. Mostafa N Y, Kishar E A, Abo-el-enein S A. FTIR Study and Cation Exchange Capacity of Fe3+ and Mg2+ Substituted Calcium Silicate Hydrates[J]. J. Alloys. Compd., 2009, 473(1): 538–542

    Article  CAS  Google Scholar 

  81. Tang Y J, Chen W. Effect of Magnesium on the Structure and Chemical Composition of Calcium Silicate Hydrate at Elevated Temperature[J]. Constr. Build. Mater., 2020, 240: 117 925

    Article  CAS  Google Scholar 

  82. Jia Y, Wang B, Wu Z, et al. Effect of CaO on the Reaction Process of MgO-SiO2-H2O Cement Pastes[J]. Mater. Lett., 2017, 192: 48–51

    Article  CAS  Google Scholar 

  83. Martinia F, Tonellic M, Geppia M, et al. Hydration of MgO/SiO2 and Portland Cement Mixtures: A Structural Investigation of the Hydrated Phases by Means of X-ray Diffraction and Solid State NMR Spectroscopy[J]. Cem. Concr. Res., 2017, 102: 60–67

    Article  Google Scholar 

  84. Amaral L F, Oliveira I R, Bonadia P, et al. Chelants to Inhibit Magnesia (MgO) Hydration[J]. Ceram. Int., 2011, 37: 1537–1542

    Article  CAS  Google Scholar 

  85. Shrivastava O P, Komarneni S, Breval E. Mg2+ Uptake by Synthetic Tobermorite and Xonotlite[J]. Cem. Concr. Res., 1991, 21(1): 83–90

    Article  CAS  Google Scholar 

  86. Qian G R, Xu G L, Li H Y, et al. Mg-Xonotlite and Its Coexisting Phases[J]. Cem. Concr. Res., 1997, 27(3): 315–320

    Article  CAS  Google Scholar 

  87. Fernandez L, Alonso C, Andrade C, et al. The Interaction of Magnesium in Hydration of C3S and CSH Formation Using 29Si MAS-NMR[J]. J. Mater. Sci., 2008, 43(17): 5772–5783

    Article  CAS  Google Scholar 

  88. Fernandez L, Alonso C, Andrade C. The Role of Magnesium during the Hydration of C3S and CSH Formation. Scanning Electron Microscopy and Mid-infrared Studies[J]. Adv. Cem. Res., 2005, 17(1): 9–21

    Article  CAS  Google Scholar 

  89. Song Q, Hu Y R, Wang Q, et al. Research Development of Magnesium Silicate Hydrate Cement[J]. J. Chin. Ceram. Soc., 2019, 47(11): 1643–1651 (in Chinese)

    Google Scholar 

  90. Zhang T, Cheeseman C R, Vandeperre L J. Development of Low pH Cement Systems Forming Magnesium Silicate Hydrate (MSH)[J]. Cem. Conc. Res., 2011, 41(4): 439–442

    Article  CAS  Google Scholar 

  91. Jin F, Al-Tabbaa A. Strength and Hydration Products of Reactive MgO-silica Pastes[J]. Cem. Conc. Comp., 2014, 52: 27–33

    Article  CAS  Google Scholar 

  92. Jin F, Gu K, Al-Tabbaa A. Strength and Drying Shrinkage of Reactive MgO Modified Alkali-actived Slag Paste[J]. Constr. Build. Mater., 2014, 51: 395–404

    Article  Google Scholar 

  93. Jin F, Al-Tabbaa A. Strength and Drying Shrinkage of Slag Paste Actived by Sodium Carbonate and Reactive MgO[J]. Constr. Build. Mater., 2015, 81: 58–65

    Article  Google Scholar 

  94. Jin F, Gu K, Al-Tabbaa A. Strength and Hydration Properties of Reactive MgO-actived Ground Grnulted Blast Furnace Slag Paste[J]. Cem. Conc. Comp., 2015, 57: 8–16

    Article  CAS  Google Scholar 

  95. Fang Y H, Liu J F, Chen Y Q. Effect of Magnesia on Properties and Microstructure of Alkali-activated Slag Cement[J]. Water. Sci. Engineer., 2011, 4: 463–469

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Xiao  (肖建敏).

Additional information

Conflict of interest

All authors declare that there are no competing interests.

Funded by Natural Science Basic Research Plan in Shaanxi Province of China (Nos.2021JQ-500, 2021GY-203, 2023-JC-YB-096), Shaanxi Provincial Education Department of Key Scientific Research Plan (No.20JS079) and Shaanxi Provincial Education Department of Normal Scientific Research Plan (No.20JK0727)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Li, H. & Hu, Y. Structure, Formation, Properties, and Application of Calcium and Magnesium Silicate Hydrates System—A Review. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 604–615 (2023). https://doi.org/10.1007/s11595-023-2736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2736-y

Key words

Navigation