Skip to main content
Log in

Al-50 wt%Si Alloy by Spark Plasma Sintering (SPS) for Electronic Packaging Materials

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A hypereutectic Al-50 wt%Si alloy for electronic packaging was prepared by spark plasma sintering (SPS) technology using gas-atomized Al-50 wt%Si powder. The effect of sintering parameters on alloy phase composition, microstructure, thermal performance and the tensile strength at different temperatures was investigated. The experimental results show that the alloy can obey the diffraction peaks of silicon and aluminum without other peaks appearing. The primary silicon in the prepared alloy can be evenly distributed in the aluminum matrix. The coefficient of thermal expansion (CTE) and thermal conductivity (TC) of the alloy will improve with the increase of sintering temperature, but they will decrease after sintering for a long time, which is caused by the large difference of coefficient of thermal expansion between silicon and aluminum. The tensile properties of the alloy at room temperature will increase with the increase of sintering temperature, but higher test temperatures will inhibit the tensile properties except the elongation. The morphology and fracture mode of the tensile fracture are also analyzed to determine the good bonding strength of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu J H, Wang C B. Preparation and Properties of Sip/Al Composites by Spark Plasma Sintering[J]. Materials & Design, 2012, 41:198–202

    Article  CAS  Google Scholar 

  2. J M Molina, E Louis. Anisotropy in Thermal Conductivity of Graphite Flakes—SiCp/matrix Composites: Implications in Heat Sinking Design for Thermal Management Applications[J]. Materials Characterization, 2015, 109: 107–115

    Article  CAS  Google Scholar 

  3. Filip Průša, Jakub Šesták. Application of SPS Consolidation and Its Influence on the Properties of the FeAl20Si20 Alloys Prepared by Mechanical Alloying[J]. Materials Science and Engineering: A, 2019, 761: 138–020

    Google Scholar 

  4. Cai Z Y, Wang R. Thermal Cycling Reliability of Al/50Sip Composite for Thermal Management in Electronic Packaging[J]. J. Materials Science: Materials in Electronics, 2015, 26(7): 4894–4901

    CAS  Google Scholar 

  5. Guan L, Wei Z. Influence of Hot Isostatic Pressing Temperature on the Microstructure and Properties of AlSi7Cu2Mg Alloys[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2020, 35(6): 1135–1141

    Article  CAS  Google Scholar 

  6. Cai Z Y, Wang R. Characterization of Rapidly Solidified Al-27 Si Hypereutectic Alloy: Effect of Solidification Condition[J]. J. Materials Engineering and Performance, 2015, 24(3):1226–1236

    Article  CAS  Google Scholar 

  7. O I Tolochyn, O V Tolochyna. Influence of Sintering Temperature on the Structure and Properties of Powder Iron Aluminide Fe3Al[J]. Powder Metallurgy and Metal Ceramics, 2020, 59(3):150–159

    Article  CAS  Google Scholar 

  8. Roberto Orrù, Roberta Licheri. Consolidation/synthesis of Materials by Electric Current Activated/assisted Sintering[J]. Materials Science and Engineering: R: Reports, 2009, 63(4): 127–287

    Google Scholar 

  9. Hasan Kaser Issa, Aboozar Taherizadeh. Development of an Aluminum/amorphous Nano-SiO2 Composite using Powder Metallurgy and Hot Extrusion Processes[J]. Ceramics International, 2017, 43(17): 14582–14592

    Article  Google Scholar 

  10. Jiang H, Xu Z G. Effects of Pulse Conditions on Microstructure and Mechanical Properties of Si3N4/6061Al Composites Prepared by Spark Plasma Sintering (SPS)[J]. Journal of Alloys and Compounds, 2018, 763: 822–834

    Article  CAS  Google Scholar 

  11. Zhiyong Cai, Chun Zhang. High-temperature Mechanical Properties and Thermal Cycling Stability of Al-50Si alloy for Electronic Packaging[J]. Materials Science and Engineering: A, 2018, 728: 95–101

    Article  Google Scholar 

  12. T T Saravanan, M Kamaraj. On Characteristic Eutectic Free Microstructural Evolution in Hypereutectic Al-Si Processed Through Spark Plasma Sintering[J]. Materials Letters, 2020, 275: 128150

    Article  CAS  Google Scholar 

  13. Cai Z Y, Zhang C. Preparation of Al-Si Alloys by a Rapid Solidification and Powder Metallurgy Route[J]. Materials & Design, 2015, 87: 996–1002

    Article  CAS  Google Scholar 

  14. Zhang K, Lei Z. High-temperature Tensile Behavior of Laser Welded Ti-22Al-25Nb Joints at Different Temperatures[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35(6): 1116–1121

    Article  CAS  Google Scholar 

  15. S C Hogg, A Lambourne. Microstructural Characterisation of Spray Formed Si-30Al for Thermal Management Applications[J]. Scripta Materialia, 2006, 55(1): 111–114

    Article  CAS  Google Scholar 

  16. Cai Z Y, Zhang C. Preparation of Al-Si Alloys by a Rapid Solidification and Powder Metallurgy Route[J]. Materials & Design, 2015, 87: 996–1002

    Article  CAS  Google Scholar 

  17. R Arpón, J M Molina. Thermal Expansion Behaviour of Aluminium/SiC Composites with Bimodal Particle Distributions[J]. Acta Materialia, 2003, 51(11): 3145–3156

    Article  Google Scholar 

  18. Li Y, Jiang Y. Understanding Grain Refining and Anti Si-poisoning Effect in Al-10Si/Al-5Nb-B System[J]. J. Materials Science & Technology, 2021, 65: 190–201

    Article  CAS  Google Scholar 

  19. Geuntak L, Eugene A Olevsky. Effect of Electric Current on Densification Behavior of Conductive Ceramic Powders Consolidated by Spark Plasma Sintering[J]. Acta Materialia, 2018, 144: 524–533

    Article  Google Scholar 

  20. Cao F Y. Evolution of Microstructure and Mechanical Properties of As-cast Al-50Si Alloy due to Heat Treatment and P Modifier Content[J]. Materials & Design, 2015, 74: 150–156

    Article  CAS  Google Scholar 

  21. Yashpal, Sumankant, C S Jawalkar. Fabrication of Aluminium Metal Matrix Composites with Particulate Reinforcement: A Review[J]. Materials Today: Proceedings, 2017, 4(2): 2927–2936

    Google Scholar 

  22. Asraful Haque, S Shekhar. Fabrication of Controlled Expansion Al-Si Composites by Pressureless and Spark Plasma Sintering[J]. Advanced Powder Technology, 2018, 29(12): 3427–3439

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin Niu  (牛立斌).

Additional information

Supported by the Shanxi Key Laboratory of Nano-materials and Technology, China (Nos. 18JS060, 17JS075)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Niu, L., Ma, J. et al. Al-50 wt%Si Alloy by Spark Plasma Sintering (SPS) for Electronic Packaging Materials. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 500–506 (2022). https://doi.org/10.1007/s11595-022-2557-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2557-4

Key words

Navigation