Skip to main content

Advertisement

Log in

Effect of SiC Particle Size on Properties of SiC Porous Ceramics

  • Advanced Material
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

We used different SiC particle size as raw materials and via reaction bonding technique to prepare porous SiC membrane supports. The phase composition, microstructure, bending strength, open porosity, and pore size distribution were investigated as a function of SiC particle size and firing temperature. It is found that the reduction of SiC particle size not only dramatically enhances the bending strength of porous SiC membrane supports, but also slightly reduces the firing temperature duo to smaller SiC particle with higher specific surface area and higher reaction activity. Besides, the open porosity and pore size distribution are dependent on the firing temperature, but insensitive to the SiC particle size due to the pore related characters mainly controlled by the binder. The bending strength increases with the increasing of the firing temperature and with the decreasing of SiC particle size. When the firing temperature was 1 500 °C and SiC average particle size was 447.75 µm, the optimal performance were achieved, the bending strength was 15.18 MPa, the open porosity was 36.02 %, the pore size distributed at 3.09–112.47 µm, and the mean pore size was 14.16 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HAN LJ, ZHOU WQ, Pickett STA, et al. Multicontaminant Air Pollution in Chinese Cities[J]. B. World Health Organ., 2018, 96(4): 233–242

    Article  Google Scholar 

  2. CUO ZX, ZHANG JY, YU B, et al. Spherical Al2O3-Coated Mullite Fibrous Ceramic Membrane and Its Applications to High-efficiency Gas Filtration[J]. Sep. Purif. Technol., 2019, 215: 368–377

    Article  CAS  Google Scholar 

  3. CHEN H, JIA XJ, WEI MJ, et al. Ceramic Tubular Nanofiltration Membranes with Tunable Performances by Atomic Layer Deposition and Calcination[J]. J. Membr. Sci., 2017, 528: 95–102

    Article  CAS  Google Scholar 

  4. SONG XY, JIAN BH, JIN J. Preparation of Porous Ceramic Membrane for Gas-Solid Separation[J]. Ceram. Int., 2018, 44(16): 20 361–20 366

    Article  CAS  Google Scholar 

  5. Nwogu NC, Anyanwu EE, Gobina E. An Initial Investigation of A Nano-Composite Silica Ceramic Membrane for Hydrogen Gas Separation and Purification[J]. Int. J. Hydrog. Energy, 2016, 41(19): 8 228–8 235

    Article  CAS  Google Scholar 

  6. LIU JX, TIAN C, XIAO HN, et al. Effect of B4C on Co-sintering of SiC Ceramic Membrane[J]. Ceram. Int., 2019, 45(3): 3 921–3 929

    Article  CAS  Google Scholar 

  7. LUO ZY, HAN W, YU XJ, et al. In-situ Reaction Bonding to Obtain Porous SiC Membrane Supports with Excellent Mechanical and Permeable Performance[J]. Ceram. Int., 2019, 45(7): 9 007–9 016

    Article  CAS  Google Scholar 

  8. WEI W, ZHANG WQ, JIANG Q, et al. Preparation of Non-oxide SiC Membrane for Gas Purification by Spray Coating[J]. J. Membr. Sci., 2017, 540: 381–390

    Article  CAS  Google Scholar 

  9. WU H, MA BY, REN XM, et al. Recycling of Silicon Kerf Waste for Preparation of Porous SiCw/SiC Membrane Supports by in situ Synthesis[J]. Int. J. Appl. Ceram. Tec., 2019, 17(1): 138–145

    Article  Google Scholar 

  10. GUO WM, XIAO HN, YAO XH, et al. Tuning Pore Structure of Corrosion Resistant Solid-State-Sintered SiC Porous Ceramics by Particle Size Distribution and Phase Transformation[J]. Mater. Des., 2016, 100: 1–7

    Article  Google Scholar 

  11. YANG Y, XU WQ, ZHANG F, et al. Preparation of Highly Stable Porous SiC Membrane Supports with Enhanced Air Purification Performance by Recycling NaA Zeolite Residue[J]. J. Membr. Sci., 2017, 541: 500–509

    Article  CAS  Google Scholar 

  12. SHI WY, LIU BR, DENG XY, et al. In-situ Synthesis and Properties of Cordierite-Bonded Porous SiC Membrane Supports Using Diatomite as Silicon Source[J]. J. Eur. Ceram. Soc., 2016, 36(14): 3 465–3 472

    Article  CAS  Google Scholar 

  13. BAI CY, LI Y, LIU ZM, et al. Fabrication and Properties of Mullite-Bonded Porous SiC Membrane Supports Using Bauxite as Aluminum Source[J]. Ceram. Int., 2015, 41(3): 4 391–4 400

    Article  CAS  Google Scholar 

  14. Fukushima M, Zhou Y, Yoshizawa Y. Fabrication and Microstructural Characterization of Porous SiC Membrane Supports with Al2O3-Y2O3 Additives[J]. J. Membr. Sci., 2009, 339(1): 78–84

    Article  CAS  Google Scholar 

  15. Kim Y, Min K, Shim J, et al. Formation of Porous SiC Ceramics via Recrystallization[J]. Eur. Ceram. Soc., 2012, 32(13): 3 611–3 615

    Article  CAS  Google Scholar 

  16. Fukushima M, Zhou Y, Miyazaki H, et al. Microstructural Characterization of Porous Silicon Carbide Membrane Support With and Without Alumina Additive[J]. J. Am. Ceram. Soc., 2006, 89(5): 1 523–1 529

    Article  CAS  Google Scholar 

  17. Kim Y, Eom J, Wang C, et al. Processing of Porous Silicon Carbide Ceramics from Carbon-Filled Polysiloxane by Extrusion and Carbothermal Reduction[J]. J. Am. Ceram. Soc., 2008, 91(4): 1 361–1 364

    Article  CAS  Google Scholar 

  18. De Wit P, Kappert EJ, Lohaus T, et al. Highly Permeable and Mechanically Robust Silicon Carbide Hollow Fiber Membranes[J]. J. Membr. Sci., 2015, 475(475): 480–487

    Article  CAS  Google Scholar 

  19. Bukhari SZA, Ha J, Lee J, et al. Fabrication and Optimization of A Clay-Bonded SiC Flat Tubular Membrane Support for Microfiltration Applications[J]. Ceram. Int., 2017, 43(10): 7 736–7 742

    Article  CAS  Google Scholar 

  20. Bukhari SZA, Ha J, Lee J, et al. Oxidation-Bonded SiC Membrane for Microfiltration[J]. J. Eur. Ceram. Soc., 2017, 38(4): 1 711–1 719

    Article  Google Scholar 

  21. Bukhari SZA, Ha J, Lee J, et al. Effect of Different Heat Treatments on Oxidation-Bonded SiC Membrane for Water Filtration[J]. Ceram. Int., 2018, 44(12): 1 4251–1 4257

    Article  CAS  Google Scholar 

  22. Kim SC, Yeom H, Kim Y, et al. Processing of Alumina-Coated Glass-Bonded Silicon Carbide Membranes for Oily Wastewater Treatment[J]. Int. J. Appl. Ceram. Tec., 2017, 14(4): 692–702

    Article  CAS  Google Scholar 

  23. Baitalik S, Dalui SK, Kayal N. Mechanical and Microstructural Properties of Cordierite-Bonded Porous SiC Ceramics Processed by Infiltration Technique Using Various Pore Formers[J]. J. Membr. Sci., 2018, 53(9): 6 350–6 365

    CAS  Google Scholar 

  24. Dey A, Kayal N, Chakrabarti O. Preparation of Porous SiC Ceramics by an Infiltration Technique[J]. Ceram. Int., 2011, 37(1): 223–230

    Article  CAS  Google Scholar 

  25. Baitalik S, Kayal N. Processing and Properties of Cordierite-Silica Bonded Porous SiC Ceramics[J]. Ceram. Int., 2017, 43(17): 14 683–14 692

    Article  CAS  Google Scholar 

  26. Eom J, Kim Y. Low Temperature Processing of Silicon Oxycarbide - Bonded Silicon Carbide[J]. J. Am. Ceram. Soc., 2010, 93(9): 2 463–2 466

    Article  CAS  Google Scholar 

  27. Lim K, Kim Y, Song I. Low-Temperature Processing of Porous SiC Ceramics[J]. J. Membr. Sci., 2013, 48(5): 1 973–1 979

    CAS  Google Scholar 

  28. Kim SC, Kim Y, Song I. Processing and Properties of Glass-Bonded Silicon Carbide Membrane Supports[J]. J. Eur. Ceram. Soc., 2017, 37(4): 1 225–1 232

    Article  CAS  Google Scholar 

  29. XING ZH, XIANG DP, MA YP. Mullite Rod Enhanced Porous SiC Ceramics Prepared at Low Temperature from Photovoltaic Waste[J]. J. Eur. Ceram. Soc., 2018, 38(15): 4 842–4 849

    Article  CAS  Google Scholar 

  30. JING YN, DENG XY, LI JB, et al. Fabrication and Properties of SiC/Mullite Composite Porous Ceramics[J]. Ceram. Int., 2014, 40(1): 1 329–1 334

    Article  CAS  Google Scholar 

  31. XING ZH, HU YH, XIANG DP, et al. Porous SiC-Mullite Ceramics with High Flexural Strength and Gas Permeability Prepared from Photovoltaic Silicon Waste[J]. Ceram. Int., 2020, 46(1): 1 236–1 242

    Article  CAS  Google Scholar 

  32. Dey A, Kayal N, Chakrabarti O, et al. Investigations on Material and Mechanical Properties, Air - Permeation Behavior and Filtration Performance of Mullite - Bonded Porous SiC Ceramics[J]. Int. J. Appl. Ceram. Tec., 2014, 11(5): 804–816

    Article  CAS  Google Scholar 

  33. Kayal N, Dey A, Chakrabarti O. Incorporation of Mullite as a Bond Phase into Porous SiC by an Infiltration Technique[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2012, 535: 222–227

    Article  CAS  Google Scholar 

  34. Kayal N, Dey A, Chakrabarti O. Synthesis of Mullite Bonded Porous SiC Ceramics by a Liquid Precursor Infiltration Method: Effect of Sintering Temperature on Material and Mechanical Properties[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2012, 556: 789–795

    Article  CAS  Google Scholar 

  35. LU QK, DONG XF, ZHU ZW, et al. Environment-oriented Low-cost Porous Mullite Ceramic Membrane Supports Fabricated from Coal Gangue and Bauxite[J]. J. Hazard. Mater., 2014, 273: 136–145

    Article  CAS  Google Scholar 

  36. DING SQ, ZHU SM, ZENG YP, et al. Effect of Y2O3 Addition on the Properties of Reaction-Bonded Porous SiC Ceramics[J]. Ceram. Int., 2006, 32(4): 461–466

    Article  CAS  Google Scholar 

  37. Kayal N, Dey A, Chakrabarti O. Effect of Y2O3 Addition on the Properties of Mullite Bonded Porous SiC Ceramics Prepared by An Infiltration Technique[J]. Bol. Soc. Esp. Ceram. V, 2013, 52 (5): 242–246

    Article  CAS  Google Scholar 

  38. YUAN B, WANG G, LI HX, et al. Fabrication and Microstructure of Porous SiC Ceramics with Al2O3 and CeO2 as Sintering Additives[J]. Ceram. Int., 2016, 42(11): 12 613–12 616

    Article  CAS  Google Scholar 

  39. BAI CY, LI Y, DENG XY, et al. Effect of V2O5 Addition on the Properties of Reaction-Bonded Porous SiC Ceramics[J]. Ceram. Int., 2014, 40(PB): 16 581–16 587

    Google Scholar 

  40. LI JF, LIN H, LI JB. Factors that Influence the Flexural Strength of SiC-based Porous Ceramics Used for Hot Gas Filter Support[J]. J. Eur. Ceram. Soc., 2011, 31(5): 825–831

    Article  Google Scholar 

  41. Baitalik S, Kayal N, Atanu D, et al. Effect of SiC Particle Size on the Marerial and Mechanical Properties of SiC Ceramics Processed by Infiltration Technique[J]. Ceramics-Silikaty, 2014, 58(4): 326–332

    CAS  Google Scholar 

  42. She JH, Deng ZY, Danieldoni J, et al. Oxidation Bonding of Porous Silicon Carbide Ceramics[J]. J. Mater. Sci., 2002, 37(17): 3 615–3 622

    Article  CAS  Google Scholar 

  43. Rice RW. Evaluation and Extension of Physical Property-Porosity Models Based on Minimum Solid Area[J]. J. Mater. Sci., 1996, 31(1): 102–118

    Article  CAS  Google Scholar 

  44. Kennedy GP, Lim K, Kim Y, et al. Effect of SiC Particle Size on Flexural Strength of Porous Self-bonded SiC Ceramics[J]. Met. Mater. Int., 2011, 17(4): 599–605

    Article  CAS  Google Scholar 

Download references

Funding

Funded by Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (No.XHD2020-001)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Liu  (刘星).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Liu, X., Wua, J. et al. Effect of SiC Particle Size on Properties of SiC Porous Ceramics. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 13–22 (2022). https://doi.org/10.1007/s11595-022-2493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2493-3

Key words

Navigation