Skip to main content
Log in

Effects of Waterborne Elastic Polyester with Different Compositions on the Properties and Compatibility of Maize Starch

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Waterborne elastic polyester (WEP) with different content of hard polyester was applied in the maize starch (MS) based composites (MS/WEP) via solution casting method. The effects of WEP with different contents of hard polyester on the structure and properties of starch were studied by Fourier transform infrared, X-ray diffraction, ultraviolet-visible, tensile test, differential scanning calorimeter, thermogravimetric analysis and moisture measurement. The experimental results show that the addition of WEP does not change the crystalline type of starch, and only reduces the crystallinity of starch. And the structure and properties of MS/WEP are related to not only the content of starch but also the microstructure of WEP or the content of hard polyester in WEP. Waterborne elastic polyester with 30wt% hard polyester (WEP30) has the best modification effect on the maize starch among all the WEPs. For example, MS/WEP30 film has the optimum toughness, aging resistance and transmittance, the lowest crystallinity and glass transition temperature among all the MS/WEP films, and the lower moisture content. It is related to the compatibility between starch and WEP, resulting from the number of physical crosslinking points in WEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yi T, Qi M, Mo Q, et al. Ecofriendly Preparation and Characterization of a Cassava Starch/Polybutylene Adipate Terephthalate Film[J]. Processes, 2020, 8: 329

    Article  CAS  Google Scholar 

  2. Xing D, Jia Y, Li D, et al. Novel Multiblock Poly(epsilon caprolactone) Copolyesters Containing D-glucose Derivatives with Different Bicyclic Structures [J]. ACS. Sustain. Chem. Eng., 2017, 5: 7 040–7 051

    Article  CAS  Google Scholar 

  3. Yang C, Zhou M, Lin Y, et al. Super-tough Poly (L-lactide) Materials: Reactive Blending with Maleic Anhydride Grafted Starch and Poly (ethylene glycol) Diacrylate[J]. Int. J. Biol. Macromol., 2019, 136: 1 069–1 075

    Article  CAS  Google Scholar 

  4. Zhu T, Wang Y. Alumina Ceramics Fabricated by In-situ Consolidation of Pre-gelling Starch[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2018, 33(3): 758–766

    Article  CAS  Google Scholar 

  5. Zhu J, Xiong J, Hu X, et al. Mechanical Properties and Wettability of Bagasse-reinforced Composite[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2019, 34(2): 312–316

    Article  CAS  Google Scholar 

  6. Zhang S, Lin Z, Li J. Elevated Ductility, Optical, and Air Barrier Properties of Poly(butyleneadipate-co-terephthalate) Bio-based Films via Novel Thermoplastic Starch Feature[J]. Polym. Adv. Technol., 2018, 30: 852–862

    Article  Google Scholar 

  7. Arroyo OH, Huneault MA, Favis BD, et al. Processing and Properties of PLA/Thermoplastic Starch/Montmorillonite Nanocomposites[J]. Polym. Compos., 2010, 31: 114–126

    Article  CAS  Google Scholar 

  8. Müller P, Imre B, Bere J, et al. Physical Ageing and Molecular Mobility in PLA Blends and Composites[J]. J. Therm. Anal. Calorim., 2015, 122: 1 423–1 433

    Article  Google Scholar 

  9. Mohammad K, Kamran A, Alireza V. Fabrication and Characterization of Poly Lactic Acid Scaffolds by Fused Deposition Modeling for Bone Tissue Engineering[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2020, 35(1): 248–251

    Article  Google Scholar 

  10. Ortega-Toro R, Collazo-Bigliardi S, Talens P, et al. Influence of Citric Acid on the Properties and Stability of Starch-polycaprolactone Based Films[J]. J. Appl. Polym. Sci., 2015, 132: 42 220

    Google Scholar 

  11. Averous L, Moro L, Dole P, et al. Properties of Thermoplastic Starch Blends: Starch-polycaprolactone[J]. Polymer, 2000, 41: 4 157–4 167

    Article  CAS  Google Scholar 

  12. Li G, Favis BD. Morphology Development and Interfacial Interactions in Polycaprolactone/Thermoplastic-starch Blends[J]. Macromol. Chem. Phys., 2010, 211: 321–333

    Article  CAS  Google Scholar 

  13. Matzinos P, Tserki V, Kontoyiannis A, et al. Processing and Characterization of Starch/Polycaprolactone Products[J]. Polym. Degrad. Stabil., 2002, 77: 17–24

    Article  CAS  Google Scholar 

  14. Wang W, Zhang G, Zhang W, et al. Processing and Thermal Behaviors of Poly(butylene succinate) Blends with Highly-filled Starch and Glycerol[J]. J. Polym. Environ., 2013, 21: 46–53

    Article  Google Scholar 

  15. Li J, Luo X, Lin X, et al. Comparative Study on the Blends of PBS/Thermoplastic Starch Prepared from Waxy and Normal Corn Starches [J]. Starch-Stärke, 2013, 65: 831–839

    Article  CAS  Google Scholar 

  16. Zhang S, He Y, Lin Z. Effects of Tartaric Acid Contents on Phase Homogeneity, Morphology and Properties of Poly (butyleneadipate-co-terephthalate)/Thermoplastic Starch Bio-composities[J]. Polym. Test., 2019, 76: 385–395

    Article  CAS  Google Scholar 

  17. Olivato JB, Marini J, Pollet E, et al. Elaboration, Morphology and Properties of Starch/Polyester Nano-biocomposites based on Sepiolite Clay[J]. Carbohyd. Polym., 2015, 118: 250–256

    Article  CAS  Google Scholar 

  18. Garalde RA, Thipmanee R, Jariyasakoolroj P, et al. The Effects of Blend Ratio and Storage Time on Thermoplastic Starch/Poly(butylene adipate-co-terephthalate) Films[J]. Heliyon, 2019, 5: e01251

    Article  Google Scholar 

  19. Carvalho AJF. Biopolymers and Biodegradable Plastics[M]. New York: Elsevier, 2013: 129–152

    Book  Google Scholar 

  20. Kalambur S, Rizvi SSH. Biodegradable and Functionally Superior Starch-polyester Nanocomposites from Reactive Extrusion[J]. J. Appl. Polym. Sci., 2005, 96: 1 072–1 082

    Article  CAS  Google Scholar 

  21. Ren J, Fu H, Ren T, et al. Preparation, Characterization and Properties of Binary and Ternary Blends with Thermoplastic Starch, Poly(lactic acid) and Poly(butylene adipate-co-terephthalate)[J]. Carbohydr. Polym., 2009, 77: 576–582

    Article  CAS  Google Scholar 

  22. Mani R, Bhattacharya M. Properties of Injection Moulded Blends of Starch and Modified Biodegradable Polyesters[J]. Eur. Polym. J., 2001, 37: 515–526

    Article  CAS  Google Scholar 

  23. Hamma A, Kaci M, Ishak ZAM, et al. Starch-grafted-polypropylene/Kenaf Fibres Composites. Part 1: Mechanical Performances and Viscoelastic Behaviour[J]. Compos. Part A-Appl. S., 2014, 56: 328–335

    Article  CAS  Google Scholar 

  24. Choi EJ, Kim CH, Park JK. Structure-property Relationship in PCL/Starch Blend Compatibilized with Starch-PCL Copolymer[J]. J. Polym. Sci. Pol. Phys., 1999, 37: 2 430–2 438

    Article  CAS  Google Scholar 

  25. Olivato JB, Grossmann MVE, Yamashita F, et al. Citric Acid and Maleic Anhydride as Compatibilizers in Starch/Poly(butylene adipate-co-terephthalate) Blends by One-step Reactive Extrusion[J]. Carbohyd. Polym., 2012, 87: 2 614–2 618

    Article  CAS  Google Scholar 

  26. Olivato JB, Müller CMO, Carvalho GM, et al. Physical and Structural Characterization of Starch/Polyester Blends with Tartaric Acid [J]. Mat. Sci. Eng. C-Bio. S., 2014, 39: 35–39

    Article  CAS  Google Scholar 

  27. Cao X, Zhang L, Huang J, et al. Structure-properties Relationship of Starch/Waterborne Polyurethane Composites[J]. J. Appl. Polym. Sci., 2003, 90: 3 325–3 332

    Article  CAS  Google Scholar 

  28. Guo Y, Li S, Wang G. Properties and Application of Waterborne Polyurethane/Starch Composite Surface Sizing Agent[J]. Adva. Mater. Res., 2011, 317–319: 15–18

    Article  Google Scholar 

  29. Zhang K, Zhang K, Cheng F, et al. Aging Properties and Hydrophilicity of Maize Starch Plasticized by Hyperbranched Poly(citrate glyceride)[J]. J. Appl. Polym. Sci., 2019, 136: 46 899

    Article  Google Scholar 

  30. Zheng Y, Zhu P, Cheng F, et al. Preparation of Waterborne Elastic Polyesters by Chain Extension with Isophorone Diisocyanate as a Chain Extender[J]. J. Appl. Polym. Sci., 2019, 136: 48 453

    Google Scholar 

  31. Zhang K, Su T, Cheng F, et al. Effect of Sodium Citrate/Polyethylene Glycol on Plasticization and Retrogradation of Maize Starch[J]. Int. J. Biol. Macromol., 2020, 154: 1 471–1 477

    Article  CAS  Google Scholar 

  32. Myllarinen P. The Crystallinity of Amylose and Amylopectin Films[J]. Carbohyd. Polym., 2002, 48: 41–48

    Article  CAS  Google Scholar 

  33. Rindlav-Westling A, Stading M, Hermansson AM, et al. Structure, Mechanical and Barrier Properties of Amylose and Amylopectin Films[J]. Carbohyd. Polym., 1998, 36: 217–224

    Article  CAS  Google Scholar 

  34. Mathew AP, Dufresne A. Plasticized Waxy Maize Starch-effect of Polyols and Relative Humidity on Material Properties[J]. Biomacromolecules, 2002, 3: 1 101–1 108

    Article  CAS  Google Scholar 

  35. Kim CH, Choi EJ, Park JK. Effect of PEG Molecular Weight on the Tensile Toughness of Starch/PCL/PEG Blends[J]. J. Appl. Polym. Sci., 2000, 77: 2 049–2 056

    Article  CAS  Google Scholar 

  36. van Soest JJG, Hulleman SHD, de Wit D, et al. Crystallinity in Starch Bioplastics [J]. Ind. Crop. Prod., 1996, 5: 11–22

    Article  CAS  Google Scholar 

  37. Sun S, Liu P, Ji N, et al. Effects of Various Cross-linking Agents on the Physicochemical Properties of Starch/PHA Composite Films Produced by Extrusion Blowing[J]. Food Hydrocolloid., 2018, 77: 964–975.

    Article  CAS  Google Scholar 

  38. Forssell PM, Mikkilti JM, Moates GK, et al. Phase and Glass Transition Behaviour, of Concentrated Barley Starch-glycerol-water Mixtures, a Model for Thermoplastic Starch[J]. Carbohyd. Polym., 1997, 34: 275–282

    Article  CAS  Google Scholar 

  39. Sahu RK, Patra K. Characterisation of Tensile Behaviour of a Dielectric Elastomer at Large Deformation[J]. J. Inst. Eng. India Ser. C, 2014, 95: 207–212

    Article  Google Scholar 

  40. Tian Y, Zhang K, Zhou M, et al. High-performance Starch Films Reinforced with Microcrystalline Cellulose Made from Eucalyptus Pulp via Ball Milling and Mercerization[J]. Starch-Stärke, 2019, 71: 1800218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Cheng  (程飞).

Additional information

Funded by the National Natural Science Foundation of China (No. 51603134), the Graduate Program Construction Project Funding of Sichuan University (No. 2017KCSJ036), and the Opening Project of Key Laboratory of Leather Chemistry and Engeering (Sichuan University), Ministry of Education (SCU2021D005)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Zheng, Y., Lin, Y. et al. Effects of Waterborne Elastic Polyester with Different Compositions on the Properties and Compatibility of Maize Starch. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 465–471 (2021). https://doi.org/10.1007/s11595-021-2431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2431-9

Key words

Navigation