Skip to main content
Log in

Constitutive Modeling and Dynamic Recrystallization Mechanisms of an Ultralow-carbon Microalloyed Steel During Hot Compression Tests

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The hot deformation behavior of an ultralow-carbon microalloyed steel was investigated using an MMS-200 thermal simulation test machine in a temperature range of 1 073–1 373 K and strain rate range of 0.01–10 s−1. The results show that the flow stress decreases with increasing deformation temperature or decreasing strain rate. The strain-compensated constitutive model based on the Arrhenius equation for this steel was established using the true stress-strain data obtained from a hot compression test. Furthermore, a new constitutive model based on the Z-parameter was proposed for this steel. The predictive ability of two constitutive models was compared with statistical measures. The results indicate the new constitutive model based on the Z-parameter can more accurately predict the flow stress of an ultralow-carbon microalloyed steel during hot deformation. The dynamic recrystallization (DRX) nucleation mechanism at different deformation temperatures was observed and analyzed by transmission electron microscopy (TEM), and strain-induced grain boundary migration was observed at 1 373 K/0.01 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang B, Fang W, Chen R M, et al. Mechanical Properties and Microstructural Characterization of Medium Carbon Non-quenched and Tempered Steel: Microalloying Behavior[J]. Mater Sci. Eng. A, 2019, 748:180–188

    Article  CAS  Google Scholar 

  2. Olasolo M, Uranga P, Rodriguez-Ibabe J M, et al. Effect of Austenite Microstructure and Cooling Rate on Transformation Characteristics in a Low Carbon Nb-V Microalloyed Steel[J]. Mater. Sci. Eng. A, 2011, 528(6): 2559–2569

    Article  Google Scholar 

  3. Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to Bainite Phase Transformation in the Heat-affected Zone of a High Strength Low Alloy Steel[J]. Acta Mater., 2004, 52(8): 2337–2348

    Article  CAS  Google Scholar 

  4. Xiao F, Zhao M, Shan Y, et al. Processing of Ultralow Carbon Pipline Steels with Acicular Ferrite[J]. J. Mater. Sci. Technol., 2004, 20(6): 779–781

    CAS  Google Scholar 

  5. Gong P, Palmiere E J, Rainforth W M. Thermomechanical Processing Route to Achieve Ultrafine Grains in Low Carbon Microalloyed Steels[J]. Acta Mater., 2016, 119: 43–54

    Article  CAS  Google Scholar 

  6. Lan L, Zhou W, Misra R D K. Effect of Hot Deformation Parameters on Flow Stress and Microstructure in a Low Carbon Microalloyed Steel[J]. Mater. Sci. Eng. A, 2019, 756: 18–26

    Article  CAS  Google Scholar 

  7. Ouchi C. Development of Steel Plates by Intensive Use of TMCP and Direct Quenching Processes[J]. ISI J Int., 2001, 41(6): 542–553

    Article  CAS  Google Scholar 

  8. Ge G W, Zhang L Q, Xin J J, et al. Constitutive Modeling of High Temperature Flow Behavior in a Ti-45Al-8Nb-2Cr-2Mn-0.2Y Alloy[J]. Sci. Rep., 2018, 8: 5 453

    Article  Google Scholar 

  9. Wang X, Wang D, Jin J, et al. Effects of Strain Rates and Twins Evolution on Dynamic Recrystallization Mechanisms of Austenite Stainless Steel[J]. Mater. Sci. Eng. A, 2019, 761: 138 044

    Article  CAS  Google Scholar 

  10. Huang K, Loge R E. A Review of Dynamic Recrystallization Phenomena in Metallic Materials[J]. Mater. Des., 2016, 111: 548–574

    Article  CAS  Google Scholar 

  11. He G A, Liu F, Huang L, et al. Microstructure Evolutions and Nucleation Mechanisms of Dynamic Recrystallization of a Powder Metallurgy Ni-based Superalloy During Hot Compression[J]. Mater. Sci. Eng. A, 2016, 677: 496–504

    Article  CAS  Google Scholar 

  12. Abedi H R, Hanzaki A Z, Liu Z, et al. Continuous Dynamic Recrystallization in Low Density Steel[J]. Mater. Des., 2017, 114: 55–64

    Article  CAS  Google Scholar 

  13. Mirzadeh H, Cabrera J M, Prado J M, et al. Hot Deformation Behavior of a Medium Carbon Microalloyed Steel[J]. Mater. Sci. Eng. A, 2011, 528(10–11): 3876–3882

    Article  Google Scholar 

  14. Zener C, Hollomon J H. Effect of Strain Rate Upon Plastic Flow of Steel[J]. J. Appl. Phys., 1944, 15(1): 22–32

    Article  Google Scholar 

  15. Shen W F, Zhang C, Zhang L W, et al. A Modified Avrami Equation for Kinetics of Static Recrystallization of Nb-V Microalloyed Steel: Experiments and Numerical Simulation[J]. Vacuum, 2018, 150: 116–123

    Article  CAS  Google Scholar 

  16. Wei H L, Liu G Q, Xiao X, et al. Characterization of Hot Deformation Behavior of a New Microalloyed C-Mn-Al High-strength Steel[J]. Mater. Sci. Eng. A, 2013, 564: 140–146

    Article  CAS  Google Scholar 

  17. Akbari Z, Mirzadeh H, Cabrera J M, et al. A Simple Constitutive Model for Predicting Flow Stress of Medium Carbon Microalloyed Steel During Hot Deformation[J]. Mater. Des., 2015, 77: 126–131

    Article  CAS  Google Scholar 

  18. Gong B, Duan X W, Liu J S, et al. A Physically Based Constitutive Model of As-forged 34CrNiMo6 Steel and Processing Maps for Hot Working[J]. Vacuum, 2018, 155: 345–357

    Article  CAS  Google Scholar 

  19. Opiela M, Grajcar A. Hot Deformation Behavior and Softening Kinetics of Ti-V-B Microalloyed Steels[J]. Arch. Civ. Mech. Eng., 2012, 12(3): 327–333

    Article  Google Scholar 

  20. Karmakar A, Misra R D K, Neogy S, et al. Development of Ultra-fine-Grained Dual-Phase Steels: Mechanism of Grain Refinement During Intercritical Deformation[J]. Metall. Trans. A, 2013, 44A(9): 4106–4118

    Article  Google Scholar 

  21. Kumar S, Aashranth B, Samantaray D, et al. Influence of Nitrogen on Kinetics of Dynamic Recrystallization in Fe-Cr-Ni-Mo Steel[J]. Vacuum, 2018, 156: 20–29

    Article  CAS  Google Scholar 

  22. Li B, Liu Q, Jia S, et al. Fabricating Ultrafine Grain by Advanced Thermomechanical Processing on Low-carbon Microalloyed Steel[J]. Scr. Mater., 2018, 152: 132–136

    Article  CAS  Google Scholar 

  23. Chen X M, Lin Y C, Chen M S, et al. Microstructural Evolution of a Nickel-based Superalloy During Hot Deformation[J]. Mater. Des., 2015, 77: 41–49

    Article  CAS  Google Scholar 

  24. Shalbafi M, Roumina R, Mahmudi R. Hot Deformation of the Extruded Mg-10Li-1Zn Alloy: Constitutive Analysis and Processing Maps[J]. J. Alloys Compd., 2017, 696: 1269–1277

    Article  CAS  Google Scholar 

  25. Dai X, Yang B. Study on Hot Deformation Behavior and Processing Maps of SA508-IV Steel for Novel Nuclear Reactor Pressure Vessels[J]. Vacuum, 2018, 155: 637–644

    Article  CAS  Google Scholar 

  26. Han Y, Wu H, Zhang W, et al. Constitutive Equation and Dynamic Recrystallization Behavior of As-cast 254SMO Super-austenitic Stainless Steel[J]. Mater. Des., 2015, 69: 230–240

    Article  CAS  Google Scholar 

  27. Zeng S, Zhao A, Jiang H, et al. Hot Deformation Behavior of β Phase Containing γ-TiAl Alloy[J]. Mater. Sci. Eng. A, 2016, 661:160–167

    Article  Google Scholar 

  28. Zhou M, Lin Y C, Deng J, et al. Hot Tensile Deformation Behaviors and Constitutive Model of an Al-Zn-Mg-Cu Alloy[J]. Mater. Des., 2014, 59: 141–150

    Article  CAS  Google Scholar 

  29. Medina S F, Hernandez C A. General Expression of the Zener-Hollomon Parameter as a Function of the Chemical Composition of Low Alloy and Microalloyed Steels[J]. Acta Mater., 1996, 44(1): 137–148

    Article  CAS  Google Scholar 

  30. Ueki M, Horie S, Nakamura T. Factors Affecting Dynamic Recrystallization of Metals and Alloys[J]. Mater. Sci. Technol., 1987, 3(5): 329–337

    Article  CAS  Google Scholar 

  31. Mcqueen H J, Yue S, Ryan N D, et al. Hot Working Characteristics of Steels in Austenitic State[J]. J. Mater. Process. Technol., 1995, 53: 293–310

    Article  Google Scholar 

  32. Aghaie-Khafri M, Adhami F. Hot Deformation of 15–5 PH Stainless Steel[J]. Mater. Sci. Eng. A, 2010, 527(4–5): 1052–1057

    Article  Google Scholar 

  33. Li H Y, Wei D D, Hu J D, et al. Constitutive Modeling for Hot Deformation Behavior of T24 Ferritic Steel[J]. Comput. Mater. Sci., 2012, 53(1): 425–430

    Article  CAS  Google Scholar 

  34. Pu E X, Feng H, Liu M, et al. Constitutive Modeling for Flow Behaviors of Superaustenitic Stainless Steel S32654 During Hot Deformation[J]. J. Iron Steel Res. Int., 2016, 23(2): 178–184

    Article  Google Scholar 

  35. Xiao Y H, Guo C, Guo X Y. Constitutive Modeling of Hot Deformation Behavior of H62 Brass[J]. Mater. Sci. Eng. A, 2011, 528(21): 6510–6518

    Article  CAS  Google Scholar 

  36. Lin Y C, Chen M S, Zhong J. Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate[J]. Mech. Res. Commun., 2008, 35(3): 142–150

    Article  Google Scholar 

  37. Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive Equations to Predict High Temperature Flow Stress in a Ti-modified Austenitic Stainless Steel[J]. Mater. Sci. Eng. A, 2009, 500(1–2): 114–121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengzhi Zhao  (赵成志).

Additional information

Funded by the Fundamental Research Funds for the Central Universities (Nos. HEUCFP201731 and HEUCFP201719), and the “One Three Five” Equipment Pre-research National Defense Science and Technology Key Laboratory Fund (No. KZ42180125)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Huang, Y., Han, R. et al. Constitutive Modeling and Dynamic Recrystallization Mechanisms of an Ultralow-carbon Microalloyed Steel During Hot Compression Tests. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 946–957 (2020). https://doi.org/10.1007/s11595-020-2341-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-020-2341-2

Key words

Navigation