Skip to main content
Log in

Development of Ultrafine-Grained Dual-Phase Steels: Mechanism of Grain Refinement During Intercritical Deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Heavy deformation of metastable austenite (below Ae3) or both austenite and ferrite in the two-phase region (between Ar3 and Ar1) is known to develop an ultrafine ferrite grain structure with an average grain size of less than 3 μm. Different dynamic softening mechanisms, such as dynamic recovery, dynamic recrystallization, and dynamic strain-induced austenite→ferrite transformation (DSIT), are responsible for such grain refinement. However, the sequence of those metallurgical events and the temperature range over which any particular mechanism dominates is not yet well understood. The current study throws some light on this aspect by applying heavy, single-pass compressive deformation (with true strain of 1.0) on the microalloyed steel samples over a temperature range of 1173 K to 873 K (900 °C to 600 °C) using a Gleeble simulator (Dynamic Systems Inc., Poestenkill, NY) and water quenching the samples immediately after deformation. The current study showed the dominating effect of the following mechanisms with respect to the deformation temperature: (1) DSIT followed by conventional dynamic recrystallization (Conv-DRX) of ferrite at higher deformation temperatures (≥1073 K [800 °C]), (2) extended recovery and continuous dynamic recrystallization (Cont-DRX) of ferrite at intermediate deformation temperatures (~1023 K [750 °C]), and (3) simple dynamic recovery of ferrite at lower deformation temperatures (≤923 K [650 °C]).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T. Gladman: The Physical Metallurgy of Microalloyed Steels, Book 615, The Institute of Materials, London, U.K., 1997, pp. 80–144.

  2. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1-17.

    Article  Google Scholar 

  3. K.T. Park, Y.K. Lee, and D.H. Shin: ISIJ Int., 2005, vol. 45, pp. 750-55.

    Article  CAS  Google Scholar 

  4. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579-83.

    Article  CAS  Google Scholar 

  5. Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, and H.J. Fecht: Acta Mater., 2003, vol. 51, pp. 5555-70.

    Article  CAS  Google Scholar 

  6. S. Patra, S. Roy, V. Kumar, A. Haldar, and D. Chakrabarti: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2575-90.

    Article  Google Scholar 

  7. H. Beladi, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 450-63.

    Article  CAS  Google Scholar 

  8. R. Song, D. Ponge, D. Raabe, and R. Kaspar: Acta Mater., 2005, vol. 53, pp. 845-58.

    Article  CAS  Google Scholar 

  9. A. Ohmori, S. Torizuka, and K. Nagai: ISIJ Int., 2004, vol. 44, pp. 1063-71.

    Article  CAS  Google Scholar 

  10. R. Ueji, N. Tsuji, Y. Minamiro, and Y. Koizumi: Acta Mater., 2002, vol. 50, pp. 4177-89.

    Article  CAS  Google Scholar 

  11. R. Priestner and A.K. Ibraheem: Mater. Sci. Technol., 2000, vol. 16, pp. 1267-72.

    Article  CAS  Google Scholar 

  12. P.D. Hodgson, M.R. Hickson, and R.K. Gibbs: Scripta Mater., 1999, vol. 40, pp. 1179-84.

    Article  CAS  Google Scholar 

  13. A. Shokouhi and P.D. Hodgson: Mater. Sci. Technol., 2007, vol. 23, pp. 1233-42.

    Article  CAS  Google Scholar 

  14. P.D. Hodgson, A. Shokouhi, and H. Beladi: ISIJ Int., 2008, vol. 48, pp. 1046-49.

    Article  CAS  Google Scholar 

  15. A. Najafi-Zadeh, J.J. Jonas, and S. Yue: Metall. Trans. A, 1992, vol. 23A, pp. 2607-18.

    CAS  Google Scholar 

  16. M.R. Barnett, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1893-1900.

    Article  CAS  Google Scholar 

  17. L. Longfei, Y. Wangyue, and S. Zuqing: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 609-19.

    Article  Google Scholar 

  18. B. Eghbali: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3402-06.

    Article  Google Scholar 

  19. S.V.S. Narayana Murty, S. Torizuka, K. Nagai, T. Kitai, and Y. Kogo: Scripta Mater., 2005, vol. 53, pp. 763-68.

    Article  Google Scholar 

  20. Y.D. Huang, W.Y. Yang, and Z.Q. Sun: J. Mater. Process. Technol., 2003, vol. 134, pp. 19-25.

    Article  CAS  Google Scholar 

  21. M. Militzer and Y. Brechet: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2273-82.

    Article  CAS  Google Scholar 

  22. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658-70.

    Article  CAS  Google Scholar 

  23. H. Azizi-Alizamini, M. Militzer, and W.J. Poole: ISIJ Int., 2011, vol. 51, pp. 958-64.

    Article  CAS  Google Scholar 

  24. K. Mukherjee, S.S. Hazra, and M. Militzer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2145-59.

    Article  CAS  Google Scholar 

  25. S. Yamasaki and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2003, vol. 19, pp. 1335-43.

    Article  CAS  Google Scholar 

  26. J.L. Ferrieira, T.M.F. de Melo, I. de S. Bott, D.B. Santos, and P.R. Rios: ISIJ Int., 2007, vol. 47, pp. 1638–46.

  27. Y. Matsumura and H. Yada: Trans. ISIJ, 1987, vol. 27, pp. 492-98.

    Article  CAS  Google Scholar 

  28. V.V. Basabe and J.J. Jonas: ISIJ Int., 2010, vol. 50, pp. 1185-92.

    Article  CAS  Google Scholar 

  29. S.C. Hong and K.S. Lee: Mater. Sci. Eng. A, 2002, vol. A323, pp. 148-59.

    CAS  Google Scholar 

  30. G.L. Kelly, H. Beladi, and P.D. Hodgson: ISIJ Int., 2003, vol. 12, pp. 1585-90.

    Google Scholar 

  31. E.I. Poliak and J.J. Jonas: Acta Mater., 1996, vol. 44, pp. 127-36.

    Article  CAS  Google Scholar 

  32. S. Patra, S. Roy, V. Kumar, A. Haldar and D. Chakrabarti: Metall. Mater. Trans. A, 2011, 42A, pp. 2575-90.

    Article  Google Scholar 

  33. R.Z. Wang and T.C. Lei: Scripta Mater., 1994, vol. 31, pp. 1193-96.

    Article  CAS  Google Scholar 

  34. Y. Bergstrom: Mater. Sci. Eng. A, 1969, vol. 5, pp. 193-200.

    Article  Google Scholar 

  35. H. Luo, J. Sietsma, and S. Van Der Zwaag: Metall. Mater. Trans. A, 2004, 35A, pp. 2789-97.

    Article  CAS  Google Scholar 

  36. E.A. Simielli, S. Yue, and J.J. Jonas: Metall. Trans. A, 1992, 23A, pp. 597-608.

    CAS  Google Scholar 

  37. G. Glover and C.M. Sellars: Metall. Trans. A, 1973, vol. 4A, pp. 765-75.

    Google Scholar 

  38. B. Eghbali: Mater. Charact., 2008, vol. 59, pp. 473-78.

    Article  CAS  Google Scholar 

  39. J. Majta and A.K. Zurek: Int. J. Plast., 2003, vol. 19, pp. 707-30.

    Article  CAS  Google Scholar 

  40. S.V.S. Narayana Murty, S. Torizuka, K. Nagai, T. Kitai, and Y. Kogo: Mater. Sci. Eng. A, 2007, vol. 457, pp. 162-68.

    Article  Google Scholar 

  41. L. Li, W. Yang, and Z. Sun: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 609-19.

    CAS  Google Scholar 

  42. M. Sánchez-Araiza, S. Godet, P.J. Jacques, and J.J. Jonas: Acta Mater. 2006, vol. 54, pp. 3085-93.

    Article  Google Scholar 

  43. B. Dutta and C.M. Sellars: Mater. Sci. Technol., 1987, vol. 3, pp. 197-206.

    Article  CAS  Google Scholar 

  44. J. Weertman and J.R. Weertman: in Physical Metallurgy, 3rd ed., R.W. Cahn and P. Haasan, eds., Elsevier Science, New York, NY, 1983, pp. 1259–1307.

  45. H.S. Ubhi and T.N. Baker: Mater. Sci. Eng. A, 1989, vol. 111, pp. 189-99.

    Article  Google Scholar 

  46. C. Garcia-Mateo, Z. Lopez, and J.M. Rodriguez Ibabe: Scripta Mater., 2000, vol. 42, pp. 137-43.

    CAS  Google Scholar 

  47. P. Maugis and M. Goune’: Acta Metall., 2005, vol. 53, pp. 3359-67.

    CAS  Google Scholar 

  48. M. Calcagnotto, D. Ponge, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7832-40.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from the Council for Scientific and Industrial Research (CSIR), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debalay Chakrabarti.

Additional information

Manuscript submitted January 8, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karmakar, A., Misra, R.D.K., Neogy, S. et al. Development of Ultrafine-Grained Dual-Phase Steels: Mechanism of Grain Refinement During Intercritical Deformation. Metall Mater Trans A 44, 4106–4118 (2013). https://doi.org/10.1007/s11661-013-1757-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1757-0

Keywords

Navigation