Skip to main content

Advertisement

Log in

The pH of Cement-based Materials: A Review

  • Cementitious Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Cement-based materials (CBMs), such as paste, mortar and concrete, are highly alkaline with an initial high pH of approximately 12.0 to 13.8. CBMs have a high pH due to the existing oxide mineral portlandite and alkali metal contents in Portland cement. The high pH of concrete provides excellent protection and reinforces the steel bars against corrosion. The pH of concrete does not remain constant due to ageing and other defect-causing factors, such as chloride ingress, alkali leaching, carbonation, corrosion, acid attack, moisture and biodegradation process. Reducing the concrete pH has negative impact on the strength, durability and service life of concrete buildings. However, the high pH of concrete may also cause concrete structure deterioration, such as alkali silica reaction, porosity and moisture related damages in concrete structures. The pH of CBMs can be influenced by high temperatures. For instance, the extremely high volume (85%–100%) of slag-blended cement pastes shows considerable pH reduction from 12.80 to 11.34 at 800 °C. As many concrete structure deterioration are related to concrete pH, using an accurate and reliable method to measure pH and analyse the durability of reinforced concrete structure based on pH values is extremely important. This study is a comprehensive review of the pH of CBM in terms of measurement, limitations and varying values for different CBM types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nguyen T H, Venugopala T, Chen S, et al. Fluorescence Based Fibre Optic pH Sensor for the pH 10–13 Range Suitable for Corrosion Monitoring in Concrete Structures[J]. Sensors and Actuators B: Chemical, 2014, 191: 498–507

    Article  CAS  Google Scholar 

  2. Nagaratnam B H, Rahman M E, Mirasa A K, et al. Workability and Heat of Hydration of Self-Compacting Concrete Incorporating Agro-Industrial Waste[J]. Journal of Cleaner Production, 2016, 112: 882–894

    Article  Google Scholar 

  3. He X, Ye Q, Yang J, et al. Physico-Chemical Characteristics of Wet-Milled Ultrafine-Granulated Phosphorus Slag as a Supplementary Cementitious Material[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(3): 625–633

    Article  CAS  Google Scholar 

  4. MacGregor J G, Wight J K, Teng S, et al. Reinforced Concrete: Mechanics and Design[M]. NJ: Prentice Hall Upper Saddle River, 1997

    Google Scholar 

  5. Meyer C. The Greening of the Concrete Industry[J]. Cement and Concrete Composites, 2009, 31(8): 601–605

    Article  CAS  Google Scholar 

  6. Monteiro P. Concrete: Microstructure, Properties, and Materials[M]. New York: McGraw-Hill Publishing, 2006

    Google Scholar 

  7. Xu G, He X, He Y. Effect of Steel Slag and Granulated Blast-furnace Slag on the Mechanical Strength and Pore Structure of Cement Composites[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(5): 1186–1192

    Article  CAS  Google Scholar 

  8. GJørv O E. Durability of Concrete Structures[J]. Arabian Journal for Science and Engineering, 2011, 36(2): 151–172

    Article  Google Scholar 

  9. Sarja A Vesikari E. Durability Design of Concrete Structures[M]. Boca Raton: CRC Press, 2014

    Google Scholar 

  10. Hilsdorf H Kropp J. Performance Criteria for Concrete Durability[M]. Boca Raton: CRC Press, 2014

    Google Scholar 

  11. Ahmad S. Reinforcement Corrosion in Concrete Structures, its Monitoring and Service Life Prediction—A Review[J]. Cement and Concrete Composites, 2003, 25(4): 459–471

    Article  CAS  Google Scholar 

  12. Gruber K, Ramlochan T, Boddy A, et al. Increasing Concrete Durability with High-Reactivity Metakaolin[J]. Cement and Concrete Composites, 2001, 23(6): 479–484

    Article  CAS  Google Scholar 

  13. Li G, Wang B, Liu H. Properties of Alkali-Activated Yellow River Sediment-Slag Composite Material[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(1): 114–121

    Article  CAS  Google Scholar 

  14. Papadakis V G. Effect of Supplementary Cementing Materials on Concrete Resistance Against Carbonation and Chloride Ingress[J]. Cement and Concrete Research, 2000, 30(2): 291–299

    Article  CAS  Google Scholar 

  15. Vollpracht A, Lothenbach B, Snellings R, et al. The Pore Solution of Blended Cements: A Review[J]. Materials and Structures, 2016, 49(8): 3341–3367

    Article  CAS  Google Scholar 

  16. Angst U, Elsener B, Larsen C K, et al. Critical Chloride Content in Reinforced Concrete — A Review[J]. Cement and Concrete Research, 2009, 39(12): 1122–1138

    Article  CAS  Google Scholar 

  17. Köliö A, Niemelä P J, Lahdensivu J. Evaluation of a Carbonation Model for Existing Concrete Facades and Balconies by Consecutive Field Measurements[J]. Cement and Concrete Composites, 2016, 65: 29–40

    Article  CAS  Google Scholar 

  18. Parrott L. Damage Caused by Carbonation of Reinforced Concrete[J]. Materials and Structures, 1990, 23(3): 230–234

    Article  CAS  Google Scholar 

  19. Neville A M. Properties of Concrete[M]. London: Longman, 1995

    Google Scholar 

  20. Yang Y, Zhang Y, She W. Characterization of Surface Hardness and Microstructure of High Performance Concrete[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(1): 124–132

    Article  CAS  Google Scholar 

  21. Basheer L, Kropp J, Cleland D J. Assessment of the Durability of Concrete from Its Permeation Properties: A Review[J]. Construction and Building Materials, 2001, 15(2–3): 93–103

    Article  Google Scholar 

  22. Levy S, Helene P. Durability of Recycled Aggregates Concrete: A Safe Way to Sustainable Development[J]. Cement and Concrete Research, 2004, 34(11): 1975–1980

    Article  CAS  Google Scholar 

  23. Zhang S, Zong L. Evaluation of Relationship Between Water Absorption and Durability of Concrete Materials[J]. Advances in Materials Science and Engineering, 2014, https://doi.org/10.1155/2014/650373

  24. Cao H T, Bucea L, Ray A, et al. The Effect of Cement Composition and pH of Environment on Sulfate Resistance of Portland Cements and Blended Cements[J]. Cement and Concrete Composites, 1997, 19(2): 161–171

    Article  CAS  Google Scholar 

  25. Moreno M, Morris W, Alvarez M, et al. Corrosion of Reinforcing Steel in Simulated Concrete Pore Solutions: Effect of Carbonation and Chloride Content[J]. Corrosion Science, 2004, 46(11): 2681–2699

    Article  CAS  Google Scholar 

  26. Behnood A, Van Tittelboom K, De Belie N. Methods for Measuring pH in Concrete: A Review[J]. Construction and Building Materials, 2016, 105: 176–188

    Article  CAS  Google Scholar 

  27. Deschner F, Winnefeld F, Lothenbach B, et al. Hydration of Portland Cement with High Replacement by Siliceous Fly Ash[J]. Cement and Concrete Research, 2012, 42(10): 1389–1400

    Article  CAS  Google Scholar 

  28. Lothenbach B, Le Saout G, Gallucci E, et al. Influence of Limestone on the Hydration of Portland Cements[J]. Cement and Concrete Research, 2008, 38(6): 848–860

    Article  CAS  Google Scholar 

  29. Rajabipour F, Sant G, Weiss J. Interactions Between Shrinkage Reducing Admixtures (SRA) and Cement Paste’s Pore Solution[J]. Cement and Concrete Research, 2008, 38(5): 606–615

    Article  CAS  Google Scholar 

  30. Leemann A, Lothenbach B, Thalmann C. Influence of Superplasticizers on Pore Solution Composition and on Expansion of Concrete due to Alkali-Silica Reaction[J]. Construction and Building Materials, 2011, 25(1): 344–350

    Article  Google Scholar 

  31. Oertel T, Hutter F, Helbig U, et al. Amorphous Silica in Ultra-High Performance Concrete: First Hour of Hydration[J]. Cement and Concrete Research, 2014, 58: 131–142

    Article  CAS  Google Scholar 

  32. Larbi J A, Bijen J M. Interaction of Polymers with Portland Cement During Hydration: A Study of the Chemistry of the Pore Solution of Polymer-Modified Cement Systems[J]. Cement and Concrete Research, 1990, 20(1): 139–147

    Article  CAS  Google Scholar 

  33. Thomas N, Double D. Calcium and Silicon Concentrations in Solution during the Early Hydration of Portland Cement and Tricalcium Silicate [J]. Cement and Concrete Research, 1981, 11(5–6): 675–687

    Article  CAS  Google Scholar 

  34. Duchesne J, Bérubé M A. Evaluation of the Validity of the Pore Solution Expression Method from Hardened Cement Pastes and Mortars[J]. Cement and Concrete Research, 1994, 24(3): 456–462

    Article  CAS  Google Scholar 

  35. Li L, Nam J, Hartt W H. Ex situ Leaching Measurement of Concrete Alkalinity[J]. Cement and Concrete Research, 2005, 35(2): 277–283

    Article  CAS  Google Scholar 

  36. Wan X-m, Wittmann F H, Zhao T-j, et al. Chloride Content and pH Value in the Pore Solution of Concrete under Carbonation[J]. Journal of Zhejiang University SCIENCE A, 2013, 14(1): 71–78

    Article  CAS  Google Scholar 

  37. Cyr M, Rivard P, Labrecque F, et al. High-Pressure Device for Fluid Extraction from Porous Materials: Application to Cement-Based Materials[J]. Journal of the American Ceramic Society, 2008, 91(8): 2653–2658

    Article  CAS  Google Scholar 

  38. Taylor H F. Cement Chemistry[M]. Telford: Thomas Telford, 1997

    Book  Google Scholar 

  39. Barneyback J, r RDiamond S. Expression and Analysis of Pore Fluids from Hardened Cement Pastes and Mortars[J]. Cement and Concrete Research, 1981, 11(2): 279–285

    Article  CAS  Google Scholar 

  40. Lothenbach B, Winnefeld F, Alder C, et al. Effect of Temperature on the Pore Solution, Microstructure and Hydration Products of Portland Cement Pastes[J]. Cement and Concrete Research, 2007, 37(4): 483–491

    Article  CAS  Google Scholar 

  41. Haque M, Kayyali O. Free and Water Soluble Chloride in Concrete[J]. Cement and Concrete Research, 1995, 25(3): 531–542

    Article  CAS  Google Scholar 

  42. Tritthart J. Chloride Binding in Cement II. The Influence of the Hydroxide Concentration in the Pore Solution of Hardened Cement Paste on Chloride Binding[J]. Cement and Concrete Research, 1989, 19(5): 683–691

    Article  CAS  Google Scholar 

  43. Sagüés A, Moreno E, Andrade C. Evolution of pH During In-situ Leaching in Small Concrete Cavities[J]. Cement and Concrete Research, 1997, 27(11): 1747–1759

    Article  Google Scholar 

  44. Li L, Sagüés A A, Poor N. In situ Leaching Investigation of pH and Nitrite Concentration in Concrete Pore Solution[J]. Cement and Concrete Research, 1999, 29(3): 315–321

    Article  CAS  Google Scholar 

  45. Geng C, Xu Y, Weng D. A Time-Saving Method for Assessing the Corrosion Inhibitor Efficiency[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2010, 25(5): 856–861

    Article  CAS  Google Scholar 

  46. Kakade A M. Measuring Concrete Surface pH—A Proposed Test Method [J]. Concrete Repair Bulletin, 2014: 16–20

  47. Räsänen V, Penttala V. The pH Measurement of Concrete and Smoothing Mortar using a Concrete Powder Suspension[J]. Cement and Concrete Research, 2004, 34(5): 813–820

    Article  CAS  Google Scholar 

  48. Pu Q, Jiang L, Xu J, et al. Evolution of pH and Chemical Composition of Pore Solution in Carbonated Concrete[J]. Construction and Building Materials, 2012, 28(1): 519–524

    Article  Google Scholar 

  49. Rowell D L. Soil Science: Methods & Applications[M]. London: Routledge, 2014

    Book  Google Scholar 

  50. Grubb J A, Limaye H S, Kakade A M. Testing pH of Concrete[J]. Concrete International, 2007, 29(04): 78–83

    CAS  Google Scholar 

  51. Alonso M, Garcia C, Walker C. Development of an Accurate pH Measurement Methodology for the Pore Fluids of Low pH Cementitious Materials[R], 2012

  52. Arya C Newman J. An Assessment of Four Methods of Determining the Free Chloride Content of Concrete[J]. Materials and Structures, 1990, 23(5): 319–330

    Article  CAS  Google Scholar 

  53. Thangavel K Rengaswamy N. Relationship Between Chloride/Hydroxide Ratio and Corrosion Rate of Steel in Concrete[J]. Cement and Concrete Composites, 1998, 20(4): 283–292

    Article  CAS  Google Scholar 

  54. Pavlík V r. Water Extraction of Chloride, Hydroxide and Other Ions from Hardened Cement Pastes[J]. Cement and Concrete Research, 2000, 30(6): 895–906

    Article  Google Scholar 

  55. Basheer P, Grattan K, McCarter W, et al. Novel Methods for In situ Monitoring and Testing of Durability of Concrete Structures[C]. in Raymundo Rivera International Symposium on Durability of Concrete, 2005, Universidad Autonoma de Nuevo Leon

  56. Ghandehari M Vimer C S. In Situ Monitoring of pH Level with Fiber Optic Evanescent Field Spectroscopy[J]. NDT & E International, 2004, 37(8): 611–616

    Article  CAS  Google Scholar 

  57. Habel W R Krebber K. Fiber-Optic Sensor Applications in Civil and Geotechnical Engineering[J]. Photonic Sensors, 2011, 1(3): 268–280

    Article  Google Scholar 

  58. Xie W, Sun T, Grattan K T, et al. Fibre Optic Chemical Sensor Systems for Internal Concrete Condition Monitoring[C]. in Second European Workshop on Optical Fibre Sensors, 2004, International Society for Optics and Photonics

  59. Staneva D, Betcheva R. Synthesis and Functional Properties of New Optical pH Sensor Based on Benzo [de] Anthracen-7-One Immobilized on the Viscose[J]. Dyes and Pigments, 2007, 74(1): 148–153

    Article  CAS  Google Scholar 

  60. Basheer M P, Grattan K T, Sun T, et al. Fiber Optic Chemical Sensor Systems for Monitoring pH Changes in Concrete[C]. in Advanced Environmental, Chemical, and Biological Sensing Technologies II, 2004, International Society for Optics and Photonics

  61. Blumentritt M, Melhorn K, Flachsbarth J, et al. A Novel Fabrication Method of Fiber-Optical Planar Transmission Sensors for Monitoring pH in Concrete Structures[J]. Sensors and Actuators B: Chemical, 2008, 131(2): 504–508

    Article  CAS  Google Scholar 

  62. Villain G, Thiery M, Platret G. Measurement Methods of Carbonation Profiles in Concrete: Thermogravimetry, Chemical Analysis and Gammadensimetry[J]. Cement and Concrete Research, 2007, 37(8): 1182–1192

    Article  CAS  Google Scholar 

  63. Lo Y Lee H. Curing Effects on Carbonation of Concrete Using a Phenolphthalein Indicator and Fourier-transform Infrared Spectroscopy[J]. Building and Environment, 2002, 37(5): 507–514

    Article  Google Scholar 

  64. Bakharev T, Sanjayan J G, Cheng Y B. Resistance of Alkali-Activated Slag Concrete to Acid Attack[J]. Cement and Concrete Research, 2003, 33(10): 1607–1611

    Article  CAS  Google Scholar 

  65. Martín-del-Río J, Alejandre F, Márquez G, et al. An Argument for Using Alizarine Yellow R and Indigo Carmine to Determine In Situ the Degree of Alkalinity in Reinforced Concrete[J]. Construction and Building Materials, 2013, 40: 426–429

    Article  Google Scholar 

  66. Khalil G E, Daddario P, Lau K S, et al. Meso-Tetraarylporpholactones as High pH Sensors [J]. Analyst, 2010, 135(8): 2125–2131

    Article  CAS  Google Scholar 

  67. Srinivasan R, Phillips T E, Bargeron C B, et al. Embedded Micro-Sensor for Monitoring pH in Concrete Structures[C]. in Smart Structures and Materials 2000: Smart Systems for Bridges, Structures, and Highways, 2000, International Society for Optics and Photonics

  68. Plusquellec G, Geiker M R, Lindgárd J, et al. Determination of the pH and the Free Alkali Metal Content in the Pore Solution of Concrete: Review and Experimental Comparison[J]. Cement and Concrete Research, 2017, 96: 13–26

    Article  CAS  Google Scholar 

  69. Chang C-F, Chen J-W. The Experimental Investigation of Concrete Carbonation Depth[J]. Cement and Concrete Research, 2006, 36(9): 1760–1767

    Article  CAS  Google Scholar 

  70. Cheng-Feng C, Jing-Wen C. Strength and Elastic Modulus of Carbonated Concrete[J]. ACI Materials Journal, 2005, 102(5): 315-

    Google Scholar 

  71. Page C. Mechanism of Corrosion Protection in Reinforced Concrete Marine Structures[J]. Nature, 1975, 258(5 535): 514-

    Article  CAS  Google Scholar 

  72. Parrott L J, Killoh D C. Carbonation in a 36 Year Old, In-situ Concrete [J]. Cement and Concrete Research, 1989, 19(4): 649–656

    Article  CAS  Google Scholar 

  73. Enevoldsen J N, Hansson C M, Hope B B. The Influence of Internal Relative Humidity on the Rate of Corrosion of Steel Embedded in Concrete and Mortar[J]. Cement and Concrete Research, 1994, 24(7): 1373–1382

    Article  CAS  Google Scholar 

  74. Björk F, Eriksson C A. Measurement of Alkalinity in Concrete by a Simple Procedure, to Investigate Transport of Alkaline Material from the Concrete Slab to a Self-Levelling Screed[J]. Construction and Building Materials, 2002, 16(8): 535–542

    Article  Google Scholar 

  75. Yamanaka T, Aso I, Togashi S, et al. Corrosion by Bacteria of Concrete in Sewerage Systems and Inhibitory Effects of Formates on Their Growth [J]. Water Research, 2002, 36(10): 2636–2642

    Article  CAS  Google Scholar 

  76. Micelli F, Nanni A. Durability of FRP Rods for Concrete Structures[J]. Construction and Building Materials, 2004, 18(7): 491–503

    Article  Google Scholar 

  77. Huet B, L’Hostis V, Miserque F, et al. Electrochemical Behavior of Mild Steel in Concrete: Influence of pH and Carbonate Content of Concrete Pore Solution[J]. Electrochimica Acta, 2005, 51(1): 172-

    Article  CAS  Google Scholar 

  78. Do H S, Mun P H. A Study on Engineering Characteristics of Asphalt Concrete Using Filler with Recycled Waste Lime[J]. Waste Management, 2008, 28(1): 191–199

    Article  CAS  Google Scholar 

  79. Xu H, Liu Y, Chen W, et al. Corrosion Behavior of Reinforcing Steel in Simulated Concrete Pore Solutions: A Scanning Micro-Reference Electrode Study[J]. Electrochimica Acta, 2009, 54(16): 4067–4072

    Article  CAS  Google Scholar 

  80. Vimer C, Yu S, Ghandehari M. Probing pH Levels in Civil Engineering Materials[J]. Journal of Materials in Civil Engineering, 2009, 21(2): 51–57

    Article  CAS  Google Scholar 

  81. O’Connell M, McNally C, Richardson M G. Biochemical Attack on Concrete in Wastewater Applications: A State of the Art Review[J]. Cement and Concrete Composites, 2010, 32(7): 479–485

    Article  CAS  Google Scholar 

  82. Zhang T, Cheeseman C, Vandeperre L. Development of Low pH Cement Systems Forming Magnesium Silicate Hydrate (MSH)[J]. Cement and Concrete Research, 2011, 41(4): 439–442

    Article  CAS  Google Scholar 

  83. Rashad A M, Bai Y, Basheer P A M, et al. Chemical and Mechanical Stability of Sodium Sulfate Activated Slag After Exposure to Elevated Temperature[J]. Cement and Concrete Research, 2012, 42(2): 333–343

    Article  CAS  Google Scholar 

  84. George R P. Current Understanding and Future Approaches for Controlling Microbially Influenced Concrete Corrosion: A Review[J]. Concrete Research Letters, 2012, 3 (3)

  85. Snellings R. Solution-Controlled Dissolution of Supplementary Cementitious Material Glasses at pH 13: The Effect of Solution Composition on Glass Dissolution Rates[J]. Journal of the American Ceramic Society, 2013, 96(8): 2467–2475

    Article  CAS  Google Scholar 

  86. Hu J, Cheng X, Li X, et al. The Coupled Effect of Temperature and Carbonation on the Corrosion of Rebars in the Simulated Concrete Pore Solutions[J]. Journal of Chemistry, 2015, 2015

  87. Rashad A M. An Investigation on Very High Volume Slag Pastes Subjected to Elevated Temperatures[J]. Construction and Building Materials, 2015, 74: 249–258

    Article  Google Scholar 

  88. Šiler P, Kolářová I, Sehnal T, et al. The Determination of the Influence of pH Value of Curing Conditions on Portland Cement Hydration[J]. Procedia Engineering, 2016, 151: 10–17

    Article  CAS  Google Scholar 

  89. Ortolan V, Mancio M, Tutikian B. Evaluation of the Influence of the pH of Concrete Pore Solution on the Corrosion Resistance of Steel Reinforcement[J]. Journal of Building Pathology and Rehabilitation, 2016, 1(1): 10

    Article  Google Scholar 

  90. Noeiaghaei T, Mukherjee A, Dhami N, et al. Biogenic Deterioration of Concrete and its Mitigation Technologies[J]. Construction and Building Materials, 2017, 149: 575–586

    Article  CAS  Google Scholar 

  91. Czarnecki L, Woyciechowski P. Concrete Carbonation as a Limited Process and Its Relevance to Concrete Cover Thickness[J]. ACI Mater J., 2012, 109 (3)

  92. Nemati K. Point Shilshole Condominium Building Concrete Deterioration Causes and Repair Method[R], 2006

  93. Angst U, Elsener B, Jamali A, et al. Concrete Cover Cracking Owing to Reinforcement Corrosion-Theoretical Considerations and Practical Experience[J]. Materials and Corrosion, 2012, 63(12): 1069–1077

    Article  CAS  Google Scholar 

  94. Chi J M, Huang R, Yang C. Effects of Carbonation on Mechanical Properties and Durability of Concrete using Accelerated Testing Method[J]. Journal of Marine Science and Technology, 2002, 10(1): 14–20

    Google Scholar 

  95. Johannesson B, Utgenannt P. Microstructural Changes Caused by Carbonation of Cement Mortar[J]. Cement and Concrete Research, 2001, 31(6): 925–931

    Article  CAS  Google Scholar 

  96. Papadakis V G, Vayenas C G, Fardis M N. Fundamental Modeling and Experimental Investigation of Concrete Carbonation[J]. Materials Journal, 1991, 88(4): 363–373

    CAS  Google Scholar 

  97. https://theconstructor.org/concrete/chemical-attacks-types-concrete-structures/7237/

  98. McPolin D, Basheer P, Long A. Carbonation and pH in Mortars Manufactured with Supplementary Cementitious Materials[J]. Journal of Materials in Civil Engineering, 2009, 21(5): 217–225

    Article  CAS  Google Scholar 

  99. Tuutti K, Corrosion of Steel in Concrete[M]. Sweden: Cement-och betonginst, 1982

  100. Cui H, Tang W, Liu W, et al. Experimental Study on Effects of CO2 Concentrations on Concrete Carbonation and Diffusion Mechanisms [J]. Construction and Building Materials, 2015, 93: 522–527

    Article  Google Scholar 

  101. Glass G, Reddy B, Buenfeld N. The Participation of Bound Chloride in Passive Film Breakdown on Steel in Concrete[J]. Corrosion Science, 2000, 42(11): 2013–2021

    Article  CAS  Google Scholar 

  102. Page C. Treadaway K. Aspects of the Electrochemistry of Steel in Concrete[J]. Nature, 1982, 297(5 862): 109–115

    Article  CAS  Google Scholar 

  103. Alotaibi A. Is it Better to Renovate the Dilapidated Concrete Structures than Rebuilding them? [J]. 2016

  104. Feldmann G C. Non-Destructive Testing of Reinforced Concrete[J]. Structure Magazine, 2008: 13–17

  105. Kanazu T, Matsumura T, Nishiuchi T, et al. Effect of Simulated Acid Rain on Deterioration of Concrete, in Acid rain 2000[M]. Derlin: Springer, 2001

    Google Scholar 

  106. Torres-Luque M, Bastidas-Arteaga E, Schoefs F, et al. Non-Destructive Methods for Measuring Chloride Ingress into Concrete: State-of-the-Art and Future Challenges[J]. Construction and Building Materials, 2014, 68: 68–81

    Article  Google Scholar 

  107. Roberts D, Nica D, Zuo G, et al. Quantifying Microbially Induced Deterioration of Concrete: Initial Studies[J]. International Biodeterioration & Biodegradation, 2002, 49(4): 227–234

    Article  Google Scholar 

  108. Saetta A V, Schrefler B A, Vitaliani R V. The Carbonation of Concrete and the Mechanism of Moisture, Heat and Carbon Dioxide Flow Through Porous Materials[J]. Cement and Concrete Research, 1993, 23(4): 761–772

    Article  CAS  Google Scholar 

  109. Bérubé M-A, Duchesne J, Dorion J, et al. Laboratory Assessment of Alkali Contribution by Aggregates to Concrete and Application to Concrete Structures Affected by Alkali-Silica Reactivity[J]. Cement and Concrete Research, 2002, 32(8): 1215–1227

    Article  Google Scholar 

  110. Shehata M H, Thomas M D A. Alkali Release Characteristics of Blended Cements[J]. Cement and Concrete Research, 2006, 36(6): 1166–1175

    Article  CAS  Google Scholar 

  111. Thomas M. The Effect of Supplementary Cementing Materials on Alkali-Silica Reaction: A Review[J]. Cement and Concrete Research, 2011, 41(12): 1224–1231

    Article  CAS  Google Scholar 

  112. Saghiri M A, Shokouhinejad N, Lotfi M, et al. Push-out Bond Strength of Mineral Trioxide Aggregate in the Presence of Alkaline pH[J]. Journal of Endodontics, 2010, 36(11): 1856–1859

    Article  Google Scholar 

  113. Saly F, Guo L, Ma R, et al. Properties of Steel Slag and Stainless Steel Slag as Cement Replacement Materials: A Comparative Study[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(6): 1444–1451

    Article  CAS  Google Scholar 

  114. Pacheco Torgal F, Miraldo S, Labrincha J A, et al. An Overview on Concrete Carbonation in the Context of Eco-Efficient Construction: Evaluation, Use of SCMs and/or RAC[J]. Construction and Building Materials, 2012, 36: 141–150

    Article  Google Scholar 

  115. Toutanji H, Delatte N, Aggoun S, et al. Effect of Supplementary Cementitious Materials on the Compressive Strength and Durability of Short-Term Cured Concrete[J]. Cement and Concrete Research, 2004, 34(2): 311–319

    Article  CAS  Google Scholar 

  116. Fraay A L A, Bijen J M, de Haan Y M. The Reaction of Fly Ash in Concrete a Critical Examination[J]. Cement and Concrete Research, 1989, 19(2): 235–246

    Article  CAS  Google Scholar 

  117. Elahi A, Basheer P A M, Nanukuttan S V, et al. Mechanical and Durability Properties of High Performance Concretes Containing Supplementary Cementitious Materials[J]. Construction and Building Materials, 2010, 24(3): 292–299

    Article  Google Scholar 

  118. Lothenbach B, Scrivener K, Hooton R D. Supplementary Cementitious Materials[J]. Cement and Concrete Research, 2011, 41(12): 1244–1256

    Article  CAS  Google Scholar 

  119. Lizarazo-Marriaga J, Claisse P, Ganjian E. Effect of Steel Slag and Portland Cement in the Rate of Hydration and Strength of Blast Furnace Slag Pastes[J]. Journal of Materials in Civil Engineering, 2010, 23(2): 153–160

    Article  CAS  Google Scholar 

  120. Alsubari B, Shafigh P, Ibrahim Z, et al. Heat-Treated Palm Oil Fuel Ash as an Effective Supplementary Cementitious Material Originating from Agriculture Waste[J]. Construction and Building Materials, 2018, 167: 44–54

    Article  CAS  Google Scholar 

  121. Ogunsakin O. Evaluation of the Fertilization Properties of Algal Biomass and Assessment of Koh-Induced Flocculation of PW95 Algal Cells[D]. Butte: Montana Tech University, 2017

    Google Scholar 

  122. Gruyaert E, Van den Heede P, De Belie N. Carbonation of Slag Concrete: Effect of the Cement Replacement Level and Curing on the Carbonation Coefficient-Effect of Carbonation on the Pore Structure[J]. Cement and Concrete Composites, 2013, 35(1): 39–48

    Article  CAS  Google Scholar 

  123. Papadakis V, Antiohos S, Tsimas S. Supplementary Cementing Materials in Concrete: Part II: A Fundamental Estimation of the Efficiency Factor[J]. Cement and Concrete Research, 2002, 32(10): 1533–1538

    Article  CAS  Google Scholar 

  124. Duchesne J, Be M. Effect of Supplementary Cementing Materials on the Composition of Cement Hydration Products[J]. Advanced Cement Based Materials, 1995, 2(2): 43–52

    Article  CAS  Google Scholar 

  125. Thomas M, Hooton R, Scott A, et al. The Effect of Supplementary Cementitious Materials on Chloride Binding in Hardened Cement Paste [J]. Cement and Concrete Research, 2012, 42(1): 1–7

    Article  CAS  Google Scholar 

  126. Thomas M. Review of the Effect of Fly Ash and Slag on Alkali-Aggregate Reaction in Concrete[M]. UK: Building Research Establishment, 1996

    Google Scholar 

  127. Thomas M. The Use of Silica Fume to Control Expansion due to Alkali-Aggregate Reactivity in Concrete: A Review[J]. Materials Science of Concrete., 2001: 377–433

  128. Silva M d, Battagin A, GOMES V. Cimentos Portland Com Adições Minerais[J]. Materiais de Construção Civil e Princípios de Ciência e Engenharia de Materiais. Säo Paulo: IBRACON, 2007, 1: 761–793

    Google Scholar 

  129. Bates R G Vijh A K. Determination of pH: Theory and Practice[J]. Journal of the Electrochemical Society, 1973, 120(8): 263C

    Article  Google Scholar 

  130. Begg C, Kirk G, Mackenzie A, et al. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere [J]. New Phytologist, 1994, 128(3): 469–477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shafigh Payam or Ibrahim Zainah.

Additional information

Funded by University of Malaya (No. GPF015A-2018)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumra, Y., Payam, S. & Zainah, I. The pH of Cement-based Materials: A Review. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 908–924 (2020). https://doi.org/10.1007/s11595-020-2337-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-020-2337-y

Key words

Navigation