Skip to main content

Advertisement

Log in

Coprecipitation Synthesis of Fluorides Nanoparticles with Multiform Structures and Mechanisms Research

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Fluoride nanoparticles with multiform crystal structures and morphologies were successfully synthesized by a facile, effective, and environmentally friendly coprecipitation method. Transmission electron microscopy (TEM) was used to characterize the nanoparticles. The nanoparticles were modified by PEI, CTAB, PAA and Ci, respectively. It was feasible for function by -COOH and -NH2 groups, due to the surface modification. Moreover, different surface modifications of the nanoparticles were examined. The possible formation mechanisms for fluoride nanoparticles with surface modification were presented in detail. More importantly, it is expected to be widely applied to biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhavan O. Graphene Scaffolds in Progressive Nanotechnology/Stem Cell-Based Tissue Engineering of the Nervous System[J]. J. Mater. Chem. B, 2016, 4(19): 3 169–3 190

    Article  Google Scholar 

  2. Ariga K, Ji Q M, Nakanishi W, et al. Nanoarchitectonics: A New Materials Horizon for Nanotechnology[J]. Mater. Horiz., 2015, 2(4): 406–413

    Article  Google Scholar 

  3. Shimanovich U, Gedanken A. Nanotechnology Solutions to Restore Antibiotic Activity. Nanotechnology Solutions to Restore Antibiotic Activity[J]. J. Mater. Chem. B, 2016, 4(5): 824–833

    Article  Google Scholar 

  4. Guan F F, Yao L F, Xie F J, et al. Optical and Magnetic Properties of Fe2O3/SiO2 Nano-Composite Films[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2009, 25(2): 206–209

    Article  Google Scholar 

  5. Wan M, Zhang G, He K H, et al. First-Principles Study on Adsorption of Au Atom on Hydroxylated SiO2 Surface[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(6): 1 184–1 188

    Article  Google Scholar 

  6. Jitendra S, Shivani S, Shantanu V L. Applications of Nanomaterials in Dental Science: A Review[J]. J. Nanosci. Nanotechnol., 2017, 17(4): 2 235–2 255

    Article  Google Scholar 

  7. Stephen W and Lauren F G. Post-Synthesis Separation and Storage of Zero-Valent Iron Nanoparticles[J]. J. Nanosci. Nanotechnol., 2017, 17(4): 2 413–2 422

    Article  Google Scholar 

  8. Corato R D, Nadja C B, Ragusa A, et al. Multifunctional Nanobeads Based on Quantum Dots and Magnetic Nanoparticles: Synthesis and Cancer Cell Targeting and Sorting[J]. ACS Nano, 2011, 5(2): 1 109–1 121

    Article  Google Scholar 

  9. Rehman F U, Zhao C, Jiang H, et al. Biomedical Applications of Nano-Titania in Theranostics and Photodynamic Therapy[J]. Biomater. Sci., 2016, 4(1): 40–54

    Article  Google Scholar 

  10. Filippi M, Martinelli J, Mula G S, et al. Dendrimersomes: A New Vesicular Nano-Platform for MR-Molecular Imaging Applications[J]. Chem. Commun., 2014, 50(26): 3 453–3 456

    Article  Google Scholar 

  11. Ulyana S, Bernardes G J L, Knowles T P J, et al. Protein Micro-and Nano-Capsules for Biomedical Applications[J]. Chem. Soc. Rev., 2014, 43(5): 1 361–1 371

    Article  Google Scholar 

  12. Yang K, Feng L, Shi X Z, et al. Nano-Graphene in Biomedicine: Theranostic Applications[J]. Chem. Soc. Rev., 2013, 42(2): 530–547

    Article  Google Scholar 

  13. Varaprasad K, Ramam K, Reddy G S M, et al. Development and Characterization of Nano-Multifunctional Materials for Advanced Applications[J]. RSC Adv., 2014, 4(104): 60 363–60 370

    Article  Google Scholar 

  14. Schmidt L, Dimi A, Kemnitz E. A New Approach to Prepare Nanoscopic Rare Earth Metal Fluorides: the Fluorolytic Sol-Gel Synthesis of Ytterbium Fluoride[J]. Chem. Commun., 2014, 50(33): 6 613–6 616

    Article  Google Scholar 

  15. Kaczmarek A M, Hecke K V, Deun R V. Nano- and Micro-Sized Rare-Earth Carbonates and Their Use as Precursors and Sacrificial Templates for the Synthesis of New Innovative Materials[J]. Chem. Soc. Rev., 2015, 44(8): 2 032–2 059

    Article  Google Scholar 

  16. Wang F, Han Y, Lim C S, et al. Simulaneous Phase and Size Control of Upconversion Nanocrystals Through Lanthanide Doping[J]. Nature, 2010, 463(25): 1 061–1 065

    Article  Google Scholar 

  17. Mai H X, Zhan Y W, Si R., et al. High-Quality Sodium Rare-Earth Fluoride Nanocrystals Controlled Synthesis and Optical Properties[J]. J. Am. Chem. Soc., 2006, 128(19): 6 426–6 436

    Article  Google Scholar 

  18. Bouzigues C, Gacoin T, Alexandrou A. Biological Applications of Rare-Earth Based Nanoparticles[J]. ACS Nano, 2011, 5(11): 8 488–8 505

    Article  Google Scholar 

  19. Yu M X, Li F Y, Chen Z G. Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors[J]. Anal. Chem., 2009, 81(3): 930–935

    Article  Google Scholar 

  20. Wang F, Liu X G. Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles[J]. J. Am. Chem. Soc., 2008, 130(17): 5 642–5 643

    Article  Google Scholar 

  21. Xiong L. Q, Shen B, Behera D, et al. Synthesis of Ligand-Functionalized Water-Soluble[18F]YF3 Nanoparticles for PET imaging[J]. Nanoscale, 2013, 5(8): 3 253–3 256

    Article  Google Scholar 

  22. Navadeep S, Khan L U, Vargas J M. Efficient Multicolor Tunability of Ultrasmall Ternary-doped LaF3 Nanoparticles: Energy Conversion and Magnetic Behavior[J]. Phys. Chem. Chem. Phys., 2017, 19(28): 18 660–18 670

    Article  Google Scholar 

  23. Wang M, Hou W, Mi C C, et al. Immunoassay of Goat Antihuman Immunoglobulin G Antibody Based on Luminescence Resonance Energy Transfer between Near-Infrared Responsive NaYF4: Yb, Er Upconversion Fluorescent Nanoparticles and Gold Nanoparticles[J]. Anal. Chem. 2009, 81(21): 8 783–8 789

    Article  Google Scholar 

  24. Diamente P R., Burke R D, Frank C J, et al. Bioconjugation of Ln3+-Doped LaF3 Nanoparticles to Avidin[J]. Langmuir, 2006, 22(4): 1 782–1 788

    Article  Google Scholar 

  25. Guan B Y, Wang T, Zeng S J, et al. A Versatile Cooperative Template-Directed Coating Method to Synthesize Hollow and Yolk-Shell Mesoporous Zirconium Titanium Oxide Nanospheres as Catalytic Reactors[J]. Nano Res., 2014, 7(2): 246–262

    Article  Google Scholar 

  26. Wang Z L, Hao J H, Chan H L W. Down-and Up-Conversion Photoluminescence, Cathodoluminescence and Paramagnetic Properties of NaGdF4: Yb3+, Er3+ Submicron Disks Assembled From Primary Nanocrystals[J]. J. Mater. Chem., 2010, 20(16): 3 178–3 123

    Article  Google Scholar 

  27. He F, Yang P, Wang D, et al. Self-Assembled β-NaGdF4 Microcrystals: Hydrothemal Synthesis, Morphology Evolution, and Luminescence Properties[J]. Inorg. Chem., 2011, 50(9): 4 116–4 124

    Article  Google Scholar 

  28. Qu X S, Pan G H, Yang H K, et al. Low-Temperature Synthesis of Luminescent and Mesoporous b-NaYF4 Microspheres via Polyol-Mediated Solvothermal Route[J]. RSC Adv., 2013, 3(3): 4 763–4 764

    Article  Google Scholar 

  29. Wu X J, Zhang Q B, Wang X, et al. One-Pot Synthesis of Carboxyl-Functionalized Rare Earth Fluoride Nanocrystals with Monodispersity, Ultrasmall Size and Very Bright Luminescence[J]. Eur. J. Inorg. Chem., 2011, 2011(13): 2 158–2 163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Wu  (吴睿) or Jiagen Lü  (吕家根).

Additional information

Funded by the Natural Science Foundation of Shaanxi Province (No. 2018JQ2057), Shaanxi Provincial Education Department (No.17JK0151), and Ph D Research Foundation Project of Shaanxi University of Technology (No. 209020195)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Zhang, S., Zhang, Q. et al. Coprecipitation Synthesis of Fluorides Nanoparticles with Multiform Structures and Mechanisms Research. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 558–562 (2019). https://doi.org/10.1007/s11595-019-2087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2087-x

Key words

Navigation