Skip to main content
Log in

Preparation of Calcium Fluoride Nanoparticles by Double-Jet Precipitation

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Calcium fluoride nanoparticles were prepared by double-jet precipitation. The influence of the synthesis conditions [solvent (water, alcohols, acetone, acetonitrile), temperature (20–95°С), presence of sodium citrate] on the morphology and size of the CaF2 particles formed was studied. By varying the above factors, it is possible to prepare nonaggregated round or cubic nanoparticles with the mean size from 9 to 180 nm. The presence of sodium citrate in the reaction system leads to the chemical modification of CaF2 and formation of a dense layer of citrate ions on its surface, which favors the formation of stable aqueous dispersions of CaF2. Assumptions concerning the structure of the layer of citrate complexes on the particle surface are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Li, B., Chen, Y., Huang, W., Yang, W., Yin, X., and Liu, Y., Appl. Surf. Sci., 2016, vol. 382, pp. 268–279. https://doi.org/10.1016/j.apsusc.2016.04.141

    Article  CAS  Google Scholar 

  2. Feng, D., Zhu, Y., Li, F., and Li, Z., J. Eur. Ceram. Soc., 2016, vol. 36, no. 10, pp. 2579–2585. https://doi.org/10.1016/j.jeurceramsoc.2016.03.020

    Article  CAS  Google Scholar 

  3. Wu, G., Xu, C., Xiao, G., Yi, M., and Chen, Z., Ceram. Int., 2018, vol. 44, no. 5, pp. 5550–5563. https://doi.org/10.1016/j.ceramint.2017.12.199

    Article  CAS  Google Scholar 

  4. Kong, L., Bi, Q., Niu, M., Zhu, S., Yang, J., and Liu, W., J. Eur. Ceram. Soc., 2013, vol. 33, no. 1, pp. 51–59. https://doi.org/10.1016/j.jeurceramsoc.2012.08.003

    Article  CAS  Google Scholar 

  5. Wang, L., Wang, B., Wang, X., and Liu, W., Tribol. Int., 2007, vol. 40, no. 7, pp. 1179–1185. https://doi.org/10.1016/j.triboint.2006.12.003

    Article  CAS  Google Scholar 

  6. Schneider, R., Lüthi, S.R., Albrecht, K., Brülisauer, M., Bernard, A., and Geiger, T., Macromol. Mater. Eng., 2015, vol. 300, no. 1, pp. 80–85. https://doi.org/10.1002/mame.201400172

    Article  CAS  Google Scholar 

  7. Sánchez-Leija, R.J., Riba-Moliner, M., Cayuela-Marín, D., Domínguez-Espinós, O., and Sánchez-Loredo, M.G., J. Macromol. Sci., Part B: Physics, 2014, vol. 53, no. 2, pp. 173–190. https://doi.org/10.1080/00222348.2013.810046

    Article  CAS  Google Scholar 

  8. Stavek, J., Sipek, M., Hirasawa, I., and Toyokura, K., Chem. Mater., 1992, vol. 4, no. 3, pp. 545–555. https://doi.org/10.1021/cm00021a012

    Article  CAS  Google Scholar 

  9. Costa, L.M.M., Olyveira, G.M., and Salomão, R., Adv. Tissue Eng. Regen. Med. Open Access, 2017, vol. 3, no. 2, pp. 336–340. https://doi.org/10.15406/atroa.2017.03.00059

    Article  Google Scholar 

  10. Safronikhin, A.V., Ehrlich, G.V., and Lisichkin, G.V., Russ. J. Gen. Chem., 2011, vol. 81, pp. 277–281. https://doi.org/10.1134/S1070363211020010 

    Article  CAS  Google Scholar 

  11. Safronikhin, A., Shcherba, T., Ehrlich, H., and Lisichkin, G., Appl. Surf. Sci., 2009, vol. 255, no. 18, pp. 7990–7994. https://doi.org/10.1016/j.apsusc.2009.04.196

    Article  CAS  Google Scholar 

  12. Safronikhin, A., Ehrlich, H., and Lisichkin, G., Appl. Surf. Sci., 2014, vol. 317, pp. 480–485. https://doi.org/10.1016/j.apsusc.2014.08.130

    Article  CAS  Google Scholar 

  13. Hazen, R.M. and Finger, L.W., J. Appl. Crystallogr., 1981, vol. 14, pp. 234–236. https://doi.org/10.1107/S0021889881009266

    Article  CAS  Google Scholar 

  14. Pandurangappa, C., Lakshminarasappa, B.N., and Nagabhushana, B.M., J. Alloys Compd., 2010, vol. 489, no. 2, pp. 592–595. https://doi.org/10.1016/j.jallcom.2009.09.118

    Article  CAS  Google Scholar 

  15. Laitinen, H.A. and Harris, W.E., Chemical Analysis, New York: McGraw-Hill, 1975.

    Google Scholar 

  16. Tahvildari, K., Esmaeilipour, M., Ghammamy, Sh., and Nabipour, H., Int. J. Nano Dim., 2012, vol. 2, no. 4, pp. 269–273. https://doi.org/10.7508/ijnd.2011.04.008

    Article  CAS  Google Scholar 

  17. Zabiszak, M., Nowak, M., Taras-Goslinska, K., Kaczmarek, M.T., Hnatejko, Z., and Jastrzab, R., J. Inorg. Biochem., 2018, vol. 182, pp. 37–47. https://doi.org/10.1016/j.jinorgbio.2018.01.017

    Article  CAS  Google Scholar 

  18. Park, J.-W. and Shumaker-Parry, J.S., J. Am. Chem. Soc., 2014, vol. 136, no. 5, pp. 1907–1921. https://doi.org/10.1021/ja4097384

    Article  CAS  Google Scholar 

  19. Zavadovskaya, E.K. and Timoshenko, N.M., Izv. Tomsk. Politekh. Inst., 1968, vol. 169, pp. 3–10.

    CAS  Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment, theme no. 121031300092-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Safronikhin.

Ethics declarations

A.V. Safronikhin declares that he has no conflict of interest. G.V. Lisichkin is a member of the Editorial Board of Zhurnal Prikladnoi Khimii/Russian Journal of Applied Chemistry.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 7, pp. 924–931, July, 2022 https://doi.org/10.31857/S0044461822070120

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronikhin, A.V., Lisichkin, G.V. Preparation of Calcium Fluoride Nanoparticles by Double-Jet Precipitation. Russ J Appl Chem 95, 1017–1023 (2022). https://doi.org/10.1134/S1070427222070138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222070138

Keywords:

Navigation