Skip to main content
Log in

Preparation and Properties of Polyvinyl Chloride/Carbon Nanotubes Composite

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Chemically functionalized carbon nanotubes were combined with PVC to enhance both toughness and strength by simply mixing long alkyl chain modified multi-wall carbon nanotubes (abbreviated as MWNTs) or Ester-functionalized soluble MWNTs (abbreviated as eMWNTs) with PVC in Tetrahydrofuran (THF)/Cyclohexanone (CH) solution to obtain good dispersity solution. The MWNTs modified with 1-Bromohexadecane can effectively increase the intermolecular force with PVC by hydrogen bond. The obtained nanocomposite has a regular shape with homogeneously dispersed particles. PVC/2 wt% eMWNTs has been proved to possess excellent thermal stability. The intermolecular force between eMWNTs and PVC endows the as-fabricated nanocomposite with enhanced toughness and strength, indicating that our method is promising for wide use in PVC/eMWNTs nanocomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar S, Dang T D, Arnold F E, et al. Synthesis, Structure, and Properties of PBO/SWNT Composites[J]. Macromolecules, 2002, 35(24): 9 039–9 043

    Article  Google Scholar 

  2. Zhu J, Kim J D, Peng H, et al. Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization[J]. Nano Letters, 2003, 3(8): 1 107–1 113

    Article  Google Scholar 

  3. Chang C M, Liu Y L. Functionalization of Multi-Walled Carbon Canotubes with Non-Reactive Polymers through an Ozone-Mediated Process for the Preparation of a Wide Range of High Performance Polymer/Carbon Nanotube Composites[J]. Carbon, 2010, 48(4): 1 289–1 297

    Article  Google Scholar 

  4. Wang M, Pramoda P K, Goh S H. Reinforcing and Toughening of Poly(Vinyl Chloride) with Double-C60-Capped poly(n-Butyl Methacrylate)[J]. Macromolecules, 2006, 39(14): 4 932–4 934

    Article  Google Scholar 

  5. Yang B X, Shi J H, Pramoda K P, et al. Enhancement of Stiffness, Strength, Ductility and Toughness of Poly(Ethylene Oxide) Using Phenoxy-Grafted Multiwalled Carbon Nanotubes[J]. Nanotechnolgy, 2007, 18(12): 184–191

    Article  Google Scholar 

  6. Wang H, Xie G Y, Fang M H, et al. Electrical and Mechanical Properties of Antistatic PVC Films Containing Multi-Layer Graphene[J]. Composites Part B Engineering, 2015, 79: 444–450

    Article  Google Scholar 

  7. Gao G H, Cagin T, Goddard W A. Energetics, Structure, Mechanical and Vibrational Properties of Single-Walled Carbon Nanotubes[J]. Nanotechnolgy, 1998, 9(3): 184–191

    Article  Google Scholar 

  8. Walters D A, Ericson L M, Casavant M J, et al. Elastic Strain of Freely Suspended Single-Wall Carbon Nanotube Ropes[J]. Appl. Phys. Lett., 1999, 74(25): 3 803–3 805

    Article  Google Scholar 

  9. Yu M F, Files B S, Arepalli S, et al. Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties[J]. Phys. Rev. Lett., 2000, 84(24): 5 552–5 555

    Article  Google Scholar 

  10. Blake R, Coleman J N, Byrne M T, et al. Reinforcement of Poly (Vinyl Chloride) and Polystyrene Using Chlorinated Polypropylene Grafted Carbon Nanotubes[J]. J. Mater. Chem., 2006, 16: 4 206–4 213

    Article  Google Scholar 

  11. Shi J H, Yang B X, Pramoda K P, et al. Enhancement of the Mechanical Properties of Polypropylene Using Polypropylene-Grafted Multiwalled Carbon Nanotubes[J]. Nanotechnology, 2007, 18(12): 5 606–5 613

    Google Scholar 

  12. Salavagione H J, Martínez G, Ballesteros C. Functionalization of Multi-Walled Carbon Nanotubes by Stereoselective Nucleophilic Substitution on PVC[J]. Macromolecules, 2010, 43(23): 9 754–9 760

    Article  Google Scholar 

  13. Geng H Z, Rosen R, Zheng B, et al. Fabrication and Properties of Composites of Poly(Ethylene Oxide) and Functionalized Carbon Nanotubes[J]. Adv. Mater., 2002, 14(19): 1 387–1 390

    Article  Google Scholar 

  14. Qin Y J, Shi J H, Wu W, et al. Concise Route to Functionalized Carbon Nanotubes[J]. J. Phys. Chem. B, 2003, 107(47): 12 899–12 901

    Article  Google Scholar 

  15. Zhang J, Zou H, Qing Q, et al. Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes[J]. J. Phys. Chem. B, 2003, 107(16): 3 712–3 718

    Article  Google Scholar 

  16. Liu L, Qin Y, Guo Z X, et al. Reduction of Solubilized Multi-Walled Carbon Nanotubes[J]. Carbon, 2003, 41(2): 331–335

    Article  Google Scholar 

  17. Hamon M A, Chen J, Hu H, et al. Dissolution of Single-Walled Carbon Nanotubes[J]. Adv. Mater., 1999, 11(10): 834–840

    Article  Google Scholar 

  18. Aubin M, Prud’homme R E. Miscibility in Blends of Poly (Vinyl Chloride and Polylactones[J]. Macromolecules, 1980, 13(2): 365–369

    Article  Google Scholar 

  19. Coleman M M, Zarian J. Fourier-Transform Infrared Studies of Polymer Blends. II. Poly(є-Caprolactone)-Poly (Vinyl Chloride) System[J]. J. Polym. Sci., Polym. Phys. Ed., 1979, 17(5): 837–850

    Article  Google Scholar 

  20. Varnell D F, Moskala E J, Painter P C, et al. On the Application of Fourier Transform Infrared Spectroscopy to the Elucidation of Specific Interactions in Miscible Polyesterpoly (Vinyl Chloride) Blends[J]. Polym. Eng. Sci., 1983, 23(12): 658–662

    Article  Google Scholar 

  21. Braun D, Sonderhof D. Assignment of UV-Absorption Maxima of Degraded PVC[J]. Polym. Bull., 1985, 14(4): 39–43

    Google Scholar 

  22. Marconnet A M, Yamamoto N, Panzer M A, et al. Thermal Conduction in Aligned Carbon Nanotube-polymer Nanocomposites with High Packing Density[J]. ACS Nano, 2011, 5(6): 4 818–4 825

    Article  Google Scholar 

  23. Coleman J N, Khan U, Gun’ko Y K. Mechanical Reinforcement of Polymers Using Carbon Nanotubes[J]. Adv. Mater., 2006, 18(6): 689–706

    Article  Google Scholar 

  24. O’Connor I, Hayden H, O’Connor S, et al. Kevlar Coated Carbon Nanotubes for Reinforcement of Poly Vinyl Chloride[J]. J. Mater. Chem., 2008, 18: 5 585–5 588

    Article  Google Scholar 

  25. Hernández R, Peña J J, Irusta L, et al. The Effect of a Miscible and an Immiscible Polymeric Modifier on the Mechanical and Rheological Properties of PVC[J]. Eur. Polym. J., 2000, 36(5): 1 011–1 025

    Article  Google Scholar 

  26. Wang G J, Qu Z H, Liu L, et al. Study of SMA Graft Modified MWNT/PVC Composite Materials[J]. Mater. Sci. Eng. A, 2007, 47(2): 136–139

    Google Scholar 

  27. Cadek M, Coleman J N, Ryan K P, et al. Reinforcement of Polymers with Carbon Nanotubes: the Role of Nanotube Surface Area[J]. Nano Lett., 2004, 4(2): 353–356

    Article  Google Scholar 

  28. Coleman N J, Khan U, Blau J W, et al. Small but Strong: a Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites[J]. Carbon, 2006, 44: 1 624–1 652

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujun Qin  (秦玉军) or Zhixin Guo  (郭志新).

Additional information

Funded by the National Natural Science Foundation of China (Nos.21173266, 21473250) and the Fundamental Research Funds for the Central Universities (No.11XNJ021), the Research Funds of Renmin University of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, J., Qin, Y., Zhang, P. et al. Preparation and Properties of Polyvinyl Chloride/Carbon Nanotubes Composite. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 516–520 (2019). https://doi.org/10.1007/s11595-019-2081-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2081-3

Key words

Navigation