Skip to main content
Log in

Elimination of Voids at Interface of β-SiC Films and Si Substrate by Laser CVD

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Void-free β-SiC films were deposited on Si(001) substrates by laser chemical vapor deposition using hexamethyldisilane (HMDS) as the precursor. The effect of the time of introducing HMDS, i e, the substrate temperature when HMDS introduced (Tin), on the preferred orientation, surface microstructure and void was investigated. The orientation of the deposited SiC films changed from <001> to random to <111> with increasing Tin. The surface showed a layer-by-layer microstructure with voids above Tin ⩾ 773 K, and then transformed into mosaic structure without voids at Tin= 298 K. The mechanism of the elimination of voids was discussed. At Tin =298 K, Si surface can be covered by an ultrathin SiC film, which inhibits the out-diffusion of Si atoms from substrate and prohibites the formation of the voids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castelletto S, Johnson BC, Zachreson C, et al. Room Temperature Quantum Emission from Cubic Silicon Carbide Nanoparticles[J]. ACS Nano, 2014, 8(8): 7 938–7 947

    Article  Google Scholar 

  2. Michaud JF, Portail M, Chassagne T, Zielinski M & Alquier D. 3C-SiC: New Interest for MEMS Devices[J]. Mater. Sci. Forum, 2014, 806: 3–9

    Article  Google Scholar 

  3. Yang N, Zhuang H, Hoffmann R, et al. Nanocrystalline 3C-SiC Electrode for Biosensing Applications[J]. Anal. Chem., 2011, 83(15): 5 827–5 830

    Article  Google Scholar 

  4. Arci PD & Allegra BT. 3C-SiC Epitaxial Growth on Large Area Silicon: Thin Films[J]. Res. Signpost, 2012, 661(2): 145–191

    Google Scholar 

  5. Ferro G. 3C-SiC Heteroepitaxial Growth on Silicon: The Quest for Holy Grail[J]. Crit. Rev. Solid State Mater. Sci., 2014, 40(1): 56–76

    Article  Google Scholar 

  6. Anzalone R, Severino A, Arrigo GD, et al. Heteroepitaxy of 3C-SiC on Different On-axis Oriented Silicon Substrates[J]. J. Appl. Phys., 2009, 105(8): 2–8

    Article  Google Scholar 

  7. Nordell N, Nishino S, Yang JW, C Jacob & P Pirouz. Growth of SiC Using Hexamethyldisilane in a Hydrogen-poor Ambient[J]. Appl. Phys. Lett., 1994, 64(13): 1 647–1 649

    Article  Google Scholar 

  8. Wu CH, Jacob C & Ning XJ. Epitaxial Growth of 3C-SiC on Si (111) from Hexamethyldisilane[J]. J. Cryst. Growth, 1996, 158(4): 480–490

    Article  Google Scholar 

  9. Kubo N, Kawase T, Asahina S, et al. Epitaxial Growth of 3C-SiC on Si(111) Using Hexamethyldisilane and Tetraethylsilane[J]. Jpn. J. Appl. Phys., 2004, 43(11A): 7 654–7 660

    Article  Google Scholar 

  10. Teker K, Jacob CU, Chung J & Hong MH. Epitaxial Growth of 3C-SiC on Si(001) Using Hexamethyldisilane and Comparison with Growth on Si(111)[J]. Thin Solid Films, 2000, 371: 53–60

    Article  Google Scholar 

  11. Cheng H, Tu R, Zhang S, et al. Preparation of Highly Oriented β-SiC Bulks by Halide Laser Chemical Vapor Deposition[J]. J. Eur. Ceram. Soc., 2017, 37(2): 509–515

    Article  Google Scholar 

  12. Gupta A & Jacob C. Unusual Defects in Silicon Carbide Thin Films Grown by Multiple or Interrupted Growth Technique[J]. Microelectron. Eng., 2006, 83: 5–8

    Article  Google Scholar 

  13. Goswami R. Solid Phase Epitaxial Growth of 3C-SiC Thin Film on Si and Annihilation of Nanopores[J]. Acta Mater., 2014, 65: 418–424

    Article  Google Scholar 

  14. Li JP & Steckl AJ. Nucleation and Void Formation Mechanisms in SiC Thin Film Growth on Si by Carbonization[J]. J.Electrochem.Soc., 1995, 142(2): 634–641

    Article  Google Scholar 

  15. Seo YH, Chul KK, Suh E & Lee HJ. Effects of Experimental Parameters on Void Formation in the Growth of 3C-SiC Thin Film on Si Substrate[J]. J.Electrochem., 1998, 145(1): 292–299

    Article  Google Scholar 

  16. Zhang S, Tu R & Goto T. High-Speed Epitaxial Growth of β-SiC Film on Si (111) Single Crystal by Laser Chemical Vapor Deposition[J]. J.Am.Ceram.Soc., 2012, 95(9): 2 782–2 784

    Article  Google Scholar 

  17. Zhang S, Xu Q, Tu R, Goto T & Zhang L. High-Speed Preparation of &lt;111&gt;- and &lt;110&gt;-Oriented β-SiC Films by Laser Chemical Vapor Deposition[J]. J. Am. Ceram. Soc., 2014, 97(3): 952–958

    Article  Google Scholar 

  18. Zhang S, Xu Q, Hu Z, et al. Ultra-fast Epitaxial Growth of β-SiC Films on α(4H)-SiC Using Hexamethyldisilane (HMDS) at Low Temperature[J]. Ceram. Int., 2016, 42(3): 4 632–4 635

    Article  Google Scholar 

  19. Xu Q, Zhu P, Sun Q, et al. Elimination of Double Position Domains (DPDs) in Epitaxial &lt;111&gt;-3C-SiC on Si(111) by Laser CVD[J]. Appl. Surf. Sci., 2017, 426: 662–666

    Article  Google Scholar 

  20. Zheng XH. Comprehensive Analysis of Microtwins in the 3C–SiC Films on Si (001) Substrates[J]. J. Cryst. Growth, 2001, 233(1-2): 40–44

    Article  Google Scholar 

  21. Bosi M. Growth and Characterization of 3C-SiC Films for Micro Electro Mechanical Systems (MEMS) Applications[J]. Cryst. Growth Des., 2009, 9(11): 4 852–4 859

    Article  Google Scholar 

  22. Lefebvre D. Growth Mode and Electric Properties of Graphene and Graphitic Phase Grown by Argon-Propane Assisted CVD on 3C-SiC/Si and 6H-SiC[J]. J. Cryst. Growth, 2012, 349(1): 27–35

    Article  Google Scholar 

  23. Chaika AN, Aristov VY& Molodtsova OV. Graphene on Cubic-SiC[J]. Prog. Mater. Sci., 2017, 89: 1–30

    Article  Google Scholar 

  24. Zhuang H, Yang N, Zhang L, et al. Graphene/3C-SiC Hybrid Nanolaminate[J]. ACS Appl. Mater. Interfaces, 2015, 7(51): 28 508–28 517

    Article  Google Scholar 

  25. Zhuang H, Zhang L, Staedler T & Jiang X. Low Temperature Hetero- Epitaxial Growth of 3C-SiC Films on Si Utilizing Microwave Plasma CVD **[J]. Chem. Vap. Depos., 2013, 19(1-3): 1–9

    Article  Google Scholar 

  26. Nagasawa H, Yagi K & Kawahara T. 3C-SiC Hetero-Epitaxial Growth on Undulant Si (001) Substrate[J]. J. Cryst. Growth, 2002, 239: 1 244–1 249

    Article  Google Scholar 

  27. Nagasawa H, Yagi K, Kawahara T & Hatta N. Reducing Planar Defects in 3C-SiC[J]. Chem. Vap. Depos., 2006, 12(8-9): 502–508

    Article  Google Scholar 

  28. Zhu P, Xu Q, Chen R, et al. Structural Study of β-SiC(001) Films on Si(001) by Laser Chemical Vapor Deposition[J]. J. Am. Ceram. Soc., 2017, 100(4): 1 634–1 641

    Article  Google Scholar 

  29. Takahashi K, Nishino S & Saraie J. Low-Temperature Growth of 3C-SiC on Si Substrate by Chemical Vapor Deposition Using Hexamethyldisilane as a Source Material[J]. J. Electrochem. Soc., 1992, 139(12): 3 565–3 571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Tu  (涂溶).

Additional information

Funded by the National Natural Science Foundation of China (Nos.51372188 and 51521001), the 111 Project (B13035), the International Science & Technology Cooperation Program of China (2014DFA53090), the Natural Science Foundation of Hubei Province, China (2016CFA006), the National Key Research and Development Program of China (2017YFB0310400), and the Fundamental Research Funds for the Central Universities (WUT: 2017II43GX, 2017III032)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Xu, Q., Guo, H. et al. Elimination of Voids at Interface of β-SiC Films and Si Substrate by Laser CVD. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 356–362 (2018). https://doi.org/10.1007/s11595-018-1829-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1829-4

Key words

Navigation