Skip to main content
Log in

Synthesis of BiVO4-g-C3N4 composite photocatalyst with improved visible light-induced photocatalytic activity

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The novel visible light-induced carbon nitride (g-C3N4) and BiVO4 composite photocatalysts were obtained through a simple mixing-calcination method. The physical and photophysical properties of the BiVO4-g-C3N4 composites were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy, high-resolution transmission electron microscopy (HRTEM), photoluminescent (PL) spectroscopy, and BET surface area measurements. Photocatalytic oxidation ability of the prepared samples was examined by studying the degradation of rhodamine B (RhB) as a target pollutant under visible-light irradiation. The composite photocatalysts exhibited an enhanced photocatalytic performance in degrading RhB. The optimal g-C3N4 content of the composite photocatalysts was determined for the photodegradation activity. The improved photocatalytic activity of the as-prepared composite photocatalyst may be attributed to the enhancement of photo-generated electron-hole separation at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kudo A, Miseki Y. Heterogeneous Photocatalyst Materials for Water Splitting[J]. Chem. Soc. Rev., 2009, 38: 253–278

    Article  Google Scholar 

  2. Tank CM, Sakhare YS, Kanhe NS, et al. Electric Field Enhanced Photocatalytic Properties of TiO2 Nanoparticles Immobilized in Porous Silicon Template[J]. Solid State Sci., 2011, 13: 1 500–1 504

    Article  Google Scholar 

  3. Dholam R, Patel N, Adami M, et al. Hydrogen Production by Photocatalytic Water-Splitting Using Cr- or Fe-Doped TiO2 Composite Thin Films Photocatalyst[J]. Int. J. Hydrogen Energy, 2009, 34: 5 337–5 346

    Article  Google Scholar 

  4. Kudo A, Omori K, Kato H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties[J]. J. Am. Chem. Soc., 1999, 121: 11 459–11 467

    Article  Google Scholar 

  5. Chatchai P, Murakami Y, Kishioka SY, et al. Efficient Photocatalytic Activity of Water Oxidation over WO3/BiVO4 Composite under Visible Light Irradiation[J]. Electrochimi. Acta, 2009, 54: 1 147–1 152

    Article  Google Scholar 

  6. Jiang HQ, Endo H, Natori H, et al. Fabrication and Efficient Photocatalytic Degradation of Methylene Blue over CuO/BiVO4 Composite under Visible-Light Irradiation[J]. Mater. Res. Bull., 2009, 44: 700–706

    Article  Google Scholar 

  7. Ge L. Novel Pd/BiVO4 Composite Photocatalysts for Efficient Degradation of Methyl Orange under Visible Light Irradiation[J]. Mater. Chem. Phys., 2008, 107: 465–470

    Article  Google Scholar 

  8. Zhou Y, Vuille K, Heel A, et al. An Inorganic Hydrothermal Route to Photocatalytically Active Bismuth Vanadate[J]. Appl. Catal. A, 2010, 375: 140–148

    Article  Google Scholar 

  9. Ge L. Novel Visible-Light-Driven Pt/BiVO4 Photocatalyst for Efficient Degradation of Methyl Orange[J]. J. Mol. Catal. A: Chem., 2008, 282: 62–66

    Article  Google Scholar 

  10. Osterloh FE. Inorganic Materials as Catalysts for Photochemical Splitting of Water[J]. Chem. Mater., 2008, 20: 35–54

    Article  Google Scholar 

  11. Lin XP, Xing JC, Wang WD, et al. Photocatalytic Activities of Hetero-junction Semiconductors Bi2O3/BaTiO3: A Strategy for the Design of Efficient Combined Photocatalysts[J]. J. Phys. Chem. C, 2007, 111: 18 288–18 293

    Article  Google Scholar 

  12. Wang XC, Maeda K, Thomas A, et al. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J]. Nat. Mater., 2009, 8: 76–80

    Article  Google Scholar 

  13. Yan HJ, Yang HX. TiO2-g-C3N4 Composite Materials for Photocatalytic H2 Evolution under Visible Light Irradiation[J]. J. Alloys Compd., 2011, 509: L26–L29

    Article  Google Scholar 

  14. Yan SC, Lv SB, Li ZS, et al. Organic-Inorganic Composite Photo-catalyst of g-C3N4 and TaON with Improved Visible Light Photocatalytic Activities[J]. Dalton Trans., 2010, 39: 1 488–1 491

    Article  Google Scholar 

  15. Xiang QJ, Yu JG, Jaroniec M. Preparation and Enhanced Visible-Light Photo-catalytic H2-Production Activity of Graphene/C3N4 Composites[J]. J. Phys. Chem. C, 2011, 115: 7 355–7 363

    Article  Google Scholar 

  16. Li XH, Chen JS, Wang XC, et al. Metal-Free Activation of Dioxygen by Graphene/g-C3N4 Nanocomposites: Functional Dyads for Selective Oxidation of Saturated Hydrocarbons[J]. J. Am. Chem. Soc., 2011, 133: 8 074–8 077

    Article  Google Scholar 

  17. Ge L, Han CC, Liu J. Novel Visible Light-Induced g-C3N4/Bi2WO6 Composite Photocatalysts for Efficient Degradation of Methyl Orange[J]. Appl. Catal. B: Environ., 2011, 108–109: 100–107

    Article  Google Scholar 

  18. Pan CS, Xu J, Wang YJ, et al. Dramatic Activity of C3N4/BiPO4 Photocatalyst with Core/Shell Structure Formed by Self-Assembly[J]. Adv. Funct. Mater., 2012, 22: 1 518–1 524

    Article  Google Scholar 

  19. Kang HW, Lim SN, Song DS, et al. Organic-Inorganic Composite of g-C3N4-SrTiO3: Rh Photocatalyst for Improved H2 Evolution under Visible Light Irradiation[J]. Inter. J. Hydro. Energy, 2012, 37: 11 602–11 610

    Article  Google Scholar 

  20. Ge L, Han CC. Synthesis of MWNTs/g-C3N4 Composite Photo-catalysts with Efficient Visible Light Photocatalytic Hydrogen Evolution Activity[J]. Appl. Catal. B: Environ., 2012, 117–118: 268–274

    Article  Google Scholar 

  21. Liu W, Wang ML, Xu CX, et al. Facile Synthesis of g-C3N4/ZnO Composite with Enhanced Visible Light Photooxidation and Photoreduction Properties[J]. Chem. Engineering J., 2012, 209: 386–393

    Article  Google Scholar 

  22. Fu J, Tian YL, Chang BB, et al. BiOBr-Carbon Nitride Heterojunctions: Synthesis, Enhanced Activity and Photocatalytic Mechanism[J]. J. Mater. Chem., 2012, 22: 21 159–21 166

    Article  Google Scholar 

  23. Wang YJ, Wang ZX, Muhammad S, et al. Graphite-Like C3N4 Hybridized ZnWO4 Nanorods: Synthesis and Its Enhanced Photocatalysis in Visible Light[J]. CrystEngComm, 2012, 14: 5 065–5 070

    Article  Google Scholar 

  24. Li TT, Zhao LH, He YM, et al. Synthesis of g-C3N4/SmVO4 Composite Photocatalyst with Improved Visible Light Photocatalytic Activities in RhB Degradation[J]. Applied Catalysis B: Environmental, 2013, 129: 255–263

    Article  Google Scholar 

  25. Xu H, Yan J, Xu YG, et al. Novel Visible-Light-Driven AgX/Graphite-Like C3N4 (X = Br, I) Hybrid Materials with Synergistic Photocatalytic Activity[J]. Applied Catalysis B: Environmental, 2013, 129: 182–193

    Article  Google Scholar 

  26. Wang ZQ, Luo WJ, Yan SC, et al. BiVO4 Nano-Leaves: Mild Synthesis and Improved Photocatalytic Activity for O2 Production under Visible Light Irradiation[J]. CrystEngComm, 2011, 13: 2 500–2 504

    Article  Google Scholar 

  27. Yan SC, Li ZS, Zou ZG. Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine[J]. Langmuir, 2009, 25: 10 397–10 401

    Article  Google Scholar 

  28. Liu JB, Wang H, Wang S, et al. Hydrothermal Preparation of BiVO4 Powders[J]. Mater. Sci. Eng. B, 2003, 104: 36–39

    Article  Google Scholar 

  29. Zhang L, Chen DR, Jiao XL. Monoclinic Structured BiVO4 Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Coloristic and Photocatalytic Properties[J]. J. Phys. Chem. B, 2006, 110: 2 668–2 673

    Article  Google Scholar 

  30. Gotić M, Musić S, Ivanda M, et al. Synthesis and Characterisation of Bismuth(III) Vanadate[J]. J. Mol. Struct., 2005, 744: 535–540

    Google Scholar 

  31. Yan SC, Li ZS, Zou ZG. Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation[J]. Langmuir, 2010, 26: 3 894–3 901

    Article  Google Scholar 

  32. Shen T, Zhao ZG, Yu Q, et al. Photosensitized Reduction of Benzil by Heteroatom-containing Anthracene Dyes[J]. J. Photochem. Photobiol. A: Chem., 1989, 47: 203–212

    Article  Google Scholar 

  33. Hong SJ, Lee S, Jang JS, et al. Heterojunction BiVO4/WO3 Electrodes for Enhanced Photoactivity of Water Oxidation[J]. Energy Environ. Sci., 2011, 4: 1 781–1 787

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yang  (杨明).

Additional information

Funded by the National Natural Science Foundation of China (No. 51208102)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Jin, X. Synthesis of BiVO4-g-C3N4 composite photocatalyst with improved visible light-induced photocatalytic activity. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 30, 217–222 (2015). https://doi.org/10.1007/s11595-015-1128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-015-1128-3

Key words

Navigation