Skip to main content
Log in

Simple synthesis of magnetic mesoporous carbons with high surface areas by soft-template method

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Magnetic Fe-containing ordered mesoporous carbons (Fe/OMCs) with high surface areas and pore volume were synthesized through a simple soft-template route, wherein phenolic resin was used as a carbon precursor, triblock copolymer F127 as a template agent, tetraethyl orthosilicate (TEOS) as a silica precursor and hydrated iron nitrate as an iron source. The effects of carbonization temperature, loading degree of TEOS on the structural parameters of these Fe/OMCs were evaluated by X-ray diffraction (XRD) and N2 sorption analysis. The ordering, the specific surface area and the total pore volumes increased with the increase of carbonization temperature from 600 to 850 °C. And the specific surface area and the total pore volumes increased with the increase of TEOS loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim BC, Lee J, Um W, et al. Magnetic Mesoporous Materials for Removal of Environmental Wastes[J]. J. Hazard. Mater., 2011, 192:1 140–1 147

    CAS  Google Scholar 

  2. Tian Y, Liu P, Wang XF, Lin HS. Adsorption of Malachite Green from Aqueous Solutions onto Ordered Mesoporous Carbons[J]. Chem. Eng. J., 2011, 171: 1 263–1 269

    Article  CAS  Google Scholar 

  3. Wang XF, Liu P, Tian Y. Ordered Mesoporous Carbons for Ibuprofen Drug Loading and Release Behavior[J]. Micropor. Mesopor. Mater., 2011, 142: 334–340

    Article  CAS  Google Scholar 

  4. Tian Y, Wang XF, Pan YF. Simple Synthesis of Ni-containing Ordered Mesoporous Carbons and Their Adsorption/Desorption of Methylene Orange[J]. J. Hazard. Mater., 2012, 192: 1 140–1 147

    Google Scholar 

  5. Zhai YP, Dou YQ, Liu XX, et al. One-pot Synthesis of Magnetically Separable Ordered Mesoporous Carbon[J]. J. Mater. Chem., 2009, 19:3 292–3 300

    CAS  Google Scholar 

  6. Fulvio PF, Jaroniec M, Liang CD, et al. Polypyrrole-based Nitrogen-Doped Carbon Replicas of SBA-15 and SBA-16 Containing Magnetic[J]. J. Phys. Chem. C, 2008, 112: 13 126–13 133

    Article  CAS  Google Scholar 

  7. Guo LM, Cui XZ, et al. Hollow Mesoporous Carbon Spheres with Magnetic Cores and Their Performance as Separable Bilirubin Adsorbents [J]. Chem. -Asian J., 2009, 4: 1 480–1 485

    CAS  Google Scholar 

  8. Fuertes AB, Centeno TA. Mesoporous Carbons with Graphitic Structures Fabricated by Using Porous Silica Materials as Templates and Iron-impregnated Polypyrrole as Precursor [J]. J. Mater. Chem., 2005, 15: 1 079–1 083

    Article  CAS  Google Scholar 

  9. Park IS, Choi M, Kim TW, et al. Synthesis of Magnetically Separable Ordered Mesoporous Carbons Using Furfuryl Alcohol and Cobalt Nitrate in a Silica Template [J]. J. Mater. Chem., 2006, 16: 3 409–3 416

    CAS  Google Scholar 

  10. Wang XF, Liu P, Tian Y, et al. Novel Synthesis of Fe-containing Mesoporous Carbons and Their Release of Ibuprofen[J]. Micropor. Mesopor. Mater., 2011, 145: 98–103

    Article  CAS  Google Scholar 

  11. Dong XP, Chen HR, Zhao WR, et al. Synthesis and Magnetic Properties of Mesostructured -Fe2O3/Carbon Composites by a Co-casting Method [J]. Chem. Mater., 2007, 19: 3 484–3 490

    CAS  Google Scholar 

  12. Lee JW, Jin SM, Hwang YS, et al. Simple Synthesis of Mesoporous Carbon with Magnetic Nanoparticles Embedded in Carbon Rods[J]. Carbon, 2005, 43: 2 536–2 543

    CAS  Google Scholar 

  13. Zhang TM, Zhao DL, Yin L, et al. Synthesis and Magnetic Properties of Iron Nanoparticles Confined in Highly Ordered Mesoporous Carbons[J]. J. Alloy. Compd., 2010, 508: 147–151

    Article  CAS  Google Scholar 

  14. Li JS, Gu J, Li HJ, et al. Synthesis of Highly Ordered Fe-containing Mesoporous Carbon Materials Using Soft Templating Routes[J]. Micropor. Mesopor. Mater., 2010, 128: 144–149

    Article  CAS  Google Scholar 

  15. Tian Y, Liu P, Wang J, et al. Synthesis and Characterization of Magnetic FeNi Mesoporous Carbon by Simple One Pot Method [J]. Mater. Lett., 2012, 82: 19–21

    Article  CAS  Google Scholar 

  16. Wang ZL, Liu XJ, Lv MF, Meng J. Simple Synthesis of Magnetic Mesoporous FeNi/Carbon Composites with A Large Capacity for the Immobilization of Biomolecules[J]. Carbon, 2010, 48: 3 182–3 189

    CAS  Google Scholar 

  17. Zhai YP, Dou YQ, Liu XX, et al. Soft-template Synthesis of Ordered Mesoporous Carbon/nanoparticle Nickel Composites with A High Surface Area[J]. Carbon, 2011, 49: 545–555

    Article  CAS  Google Scholar 

  18. Meng Y, Gu D, Zhang FQ, et al. Ordered Mesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic Surfactant Templating and Direct Transformation[J]. Angew. Chem. Int. Ed., 2005, 44: 7 053–7 059

    CAS  Google Scholar 

  19. Huber DL. Synthesis, Properties, and Applications of Iron Nanoparticles[J]. Small, 2005, 1: 482–501

    Article  CAS  Google Scholar 

  20. Yao JY, Li LX, Song HH, et al. Synthesis of Magnetically Separable Ordered Mesoporous Carbons from F127/[Ni(H2O)6](NO3)2/Resorcinol-formaldehyde Composites[J]. Carbon, 2009, 47: 436–444

    Article  CAS  Google Scholar 

  21. Weisweiler W, Subramanian N, Terwiesch B. Catalytic Influence of Metal Melts on the Graphitization of Monolithic Glasslike Carbon[J]. Carbon, 1971, 9: 755–758

    Article  CAS  Google Scholar 

  22. Bonnet F, Ropital F, Berthier Y, Marcus P. Filamentous Carbon Formation Caused by Catalytic Metal Particles from Iron Oxide[J]. Mater. Corros., 2003, 54: 870–880

    Article  CAS  Google Scholar 

  23. Cushing BL, Kolesnichenko VL, Connor JCO. Recent Advances in the Liquid-phase Syntheses of Inorganic Nanoparticles[J]. Chem. Rev., 2004, 104: 3 893–3 946

    Article  CAS  Google Scholar 

  24. Celik O, Dag OA. New Lyotropic Liquid Crystalline System: Oligo (Ethylene Oxide) Surfactants with [M(H2O)n]Xm Transition Metal Complexes[J]. Angew. Chem. Int. Ed., 2001, 40: 3 799–3 803

    Article  Google Scholar 

  25. Zhao DY, Feng JL, Huo QS, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science, 1998, 279: 548–552

    Article  CAS  Google Scholar 

  26. Liu RL, Shi YF, Wan Y, et al. Triconstituent Co-assembly to Ordered Mesostructured Polymer-silica and Carbon-silica Nanocomposites and Large-pore Mesoporous Carbons with High Surface areas[J]. J. Am. Chem. Soc., 2006, 128: 11 652–11 662

    CAS  Google Scholar 

  27. Deng YH, Yu T, Wan Y, et al. Ordered Mesoporous Silicas and Carbons with Large Accessible Pores Templated from Amphiphilic Diblock Copolymer poly(Ethylene Oxide)-b-polystyrene[J]. J. Am. Chem. Soc., 2007, 129: 1 690–1 697

    CAS  Google Scholar 

  28. Sterk L, Górka J, Jaroniec M. Polymer-templated Mesoporous Carbons with Nickel Nanoparticles[J]. Colloid Surface A: Physicochem. Eng. Aspects, 2010, 362: 20–27

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufang Wang  (王秀芳).

Additional information

Funded by the National Natural Science Foundation of China (50802017), the Higher Education Talents Introducing Fund of Guangdong Province (2011 Annual), the Natural Science Foundation of Guangdong Province (S2012010009416), the Foundation for Distinguished Young Talents in Higher Education of Guangdong (2012LYM_0085) and the Planned Project of Science and Technology of Guangdong Province (2012B020316007, 2012A020602058)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Zhong, G. & Wang, X. Simple synthesis of magnetic mesoporous carbons with high surface areas by soft-template method. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 668–672 (2013). https://doi.org/10.1007/s11595-013-0749-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-013-0749-7

Key words

Navigation