Skip to main content
Log in

Self-assembled SnO2 colloidal particles and their gas sensing performance to H2, C2H5OH and LPG

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Using organo-tin Sn(OC4H9)4 as precursor, sodium dodecyl sulfonate (SDS) and SDS-gelatin (SDS-G) complex as template, two tin dioxide colloidal particles were prepared by a self-assembly method. Both SnO2 products were respectively labelled SnO2-B particles with SDS and SnO2-C particles with SDS-G, which are applied in fabricating SnO2 gas sensors corresponding to SnO2-B′ and SnO2-C′ sensors. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetry and different thermal analysis (TG/DTA) were used for characterizations. The experimental results show that SnO2-B colloidal particles are composed of mesoporous piece-like particles, while SnO2-C particles mainly consist of spherical particles. Gas sensing measurements show that SnO2-B′ sensor performs the best sensing response to all target gases, including H2, C2H5OH and liquid petroleum gas (LPG). In particular, the sensing response of SnO2-B′ sensor is achieved at 32 in H2 atmosphere at the concentration of 1000×10−6 M. The gas sensing mechanism was purposely discussed from the electron transfer process and the microstructures of the as-prepared SnO2 products. It is found that serious agglomerations in SnO2-B′ particles facilitate the high gas sensing performance of SnO2-B′ sensor, while mesoporous structures in SnO2-C′ particles decrease the gas sensing response of SnO2-C′ sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen Y B, Yamazaki T, Liu Z F, et al. Porous SnO2 Sputtered Films with High H2 Sensitivity at Low Operation Temperature[J]. Thin Solid Films, 2008, 516: 5 111–5 117

    CAS  Google Scholar 

  2. Adamyan A Z, Adamyan Z N, Aroutiounian V M, et al. Sol-gel Derived Thin-film Semiconductor Hydrogen Gas Sensor[J]. International Journal of Hydrogen Energy, 2007, 32: 4 101–4 108

    Article  CAS  Google Scholar 

  3. Barsan N, Stetter J R, Findlay M, et al. High-performance Gas Sensing of CO: Comparative Tests for Semiconducting (SnO2-Based) and for Amperometric Gas Sensors[J]. Anal. Chem., 1999, 71: 2 512–2 517

    Article  CAS  Google Scholar 

  4. Zhang Y, He X L, Li J P, et al. Fabrication and Ethanol-sensing Properties of Micro Gas Sensor based on Electrospun SnO2 Nanofibers[J]. Sensors and Actuators B, 2008, 132: 67–73

    Article  Google Scholar 

  5. Adamowicz B, Izydorczyk W, Izydorczyk J, et al. Response to Oxygen and Chemical Properties of SnO2 Thin-film Gas Sensors[J]. Vacuum, 2008, 82: 966–970

    Article  CAS  Google Scholar 

  6. Wang Y L, Jiang X C, Xia Y N. A Solution-Phase, Precursor Route to Polycrystalline SnO2 Nanowires That Can Be Used for Gas Sensing under Ambient Conditions[J]. J. Am. Chem. Soc., 2003, 125: 16176–16177

    Article  CAS  Google Scholar 

  7. Wang B, Zhu L F, Yang Y H, et al. Fabrication of a SnO2 Nanowire Gas Sensor and Sensor Performance for Hydrogen[J]. J. Phys. Chem. C, 2008, 112: 6643–6647

    Article  CAS  Google Scholar 

  8. Yu W D, Li X M, Gao X D, et al. Large-Scale Synthesis and Microstructure of SnO2 Nanowires Coated with Quantumsized ZnO Nanocrystals on a Mesh Substrate[J]. J. Phys. Chem. B, 2005, 109: 17078–17081

    Article  CAS  Google Scholar 

  9. Duan J H, Yang S G, Liu H W, et al. Single Crystal SnO2 Zigzag Nanobelts[J]. J. Am. Chem. Soc., 2005, 127: 6 180–6 181

    CAS  Google Scholar 

  10. Sun S H, Meng G W, Zhang G X, et al. Controlled Growth and Optical Properties of One-dimensional ZnO Nanostructures on SnO2 Nanobelts[J]. Crystal Growth & Design, 2007, 7: 1 988–1 991

    CAS  Google Scholar 

  11. Sun J Q, Wang J S, Wu X C, et al. Novel Method for High-yield Synthesis of Rutile SnO2 Nanorods by Oriented Aggregation[J]. Crystal Growth & Design, 2006, 6: 1 584–1 587

    CAS  Google Scholar 

  12. Wang Y, Lee J Y, Deivaraj T C. Controlled Synthesis of V-shaped SnO2 Nanorods[J]. J. Phys. Chem. B, 2004, 108: 13 589–13 593

    CAS  Google Scholar 

  13. Wang G X, Park J S, Park M S, et al. Synthesis and High Gas Sensitivity of Tin Oxide Nanotubes[J]. Sensors and Actuators B, 2008, 131: 313–317

    Article  Google Scholar 

  14. Hu J Q, Ma X L, Shang N G, et al. Large-scale Rapid Oxidation Synthesis of SnO2 Nanoribbons[J]. J. Phys. Chem. B, 2002, 106: 3823–3826

    Article  CAS  Google Scholar 

  15. Vaezi M R. SnO2/ZnO Double-layer Thin Films: A Novel Economical Preparation and Investigation of Sensitivity and Stability of Double-layer Gas sensors[J]. Materials Chemistry and Physics, 2008, 110: 89–94

    Article  CAS  Google Scholar 

  16. Wang J X, Sun X W, Xie S S, et al. Preferential Growth of SnO2 Triangular Nanoparticles on ZnO Nanobelts[J]. J. Phys. Chem. C, 2007, 111: 7671–7675

    Article  CAS  Google Scholar 

  17. Kovalenko V V, Zhukova A A, Rumyantseva M N, et al. Surface Chemistry of Nanocrystalline SnO2: Effect of Thermal Treatment and Additives[J]. Sensors and Actuators B, 2007, 126: 52–55

    Article  Google Scholar 

  18. Vaishampayan M V, Deshmukh R G, Mulla I S. Influence of Pd Doping on Morphology and LPG Response of SnO2[J]. Sensors and Actuators B, 2008, 131: 665–672

    Article  Google Scholar 

  19. Huo Q S, Margolese D I, Ciesla U, et al. Organization of Organic Molecules with Inorganic Molecular Species Into Nanocomposite Biphase Arrays[J]. Chem. Mater., 1994, 6: 1 176–1 191

    Article  CAS  Google Scholar 

  20. Galo J A A S, Clément S, Bénédicte L, et al. Chemical Strategies to Design Textured Materials: From Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures[J]. Chem. Rev., 2002, 102: 4 093–4 138

    Google Scholar 

  21. Liu X H, Kan C, Wang X, et al. Self-assembled Nanodisks with Targetlike Multirings Aggregated at The Air-water Interface[J]. J. Am. Chem. Soc., 2006, 128: 430–431

    Article  CAS  Google Scholar 

  22. Ji H J, Liu X H, Wang X, et al. Effect of Proteins on The Selfassembly of Multiring Structural ZrO2 Nanodisks[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 346: 1–4

    Article  CAS  Google Scholar 

  23. Ji H J, Liu X H, Wang X, et al. Dimeric Sodium Naphthalene-1-sulfonate Aggregates Guided Self-assembly of TiO2/naphthylene Hybrid Nanocomposite Film[J]. Journal of Molecular Structure, 2009, 935: 8–12

    Article  CAS  Google Scholar 

  24. Kan C, Liu X H, Wang X, et al. Effects of Different Anionic Surfactant Templates (H+A, Na+A) on Titanium Selfassembly: In The Air-water Interfacial Flms[J]. Colloids Surfaces A: Physicochem. Eng. Aspects, 2007, 311: 93–98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang  (汪信).

Additional information

Founded by the National Natural Science Foundation of China (No. 50772048), the Natural Science Foundation of China and China Academy Engineering Physics (No. 10776014) and the innovation fund from the Graduate School of Nanjing University of Science and Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, H., Liu, X., Wang, X. et al. Self-assembled SnO2 colloidal particles and their gas sensing performance to H2, C2H5OH and LPG. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 26, 661–667 (2011). https://doi.org/10.1007/s11595-011-0287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-011-0287-0

Key words

Navigation