Skip to main content
Log in

Impact of Pd nanoparticle loading method on SnO2 surface for natural gas detection in humid atmosphere

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To improve the sensor response to low concentrations of methane (CH4) at low operating temperatures in humid atmospheres, we prepared Pd-loaded SnO2 (Pd-SnO2) nanoparticles via two different Pd-loading processes: (i) a general impregnation method and (ii) a new loading method using poly(N-vinyl-2-pyrrolidone) (PVP) as a protective agent for Pd receptor particles. According to the measured electric resistances, the Pd particles limited the hydroxyl-poisoning of the SnO2 particle surface. Because Pd is oxidized to PdO, a p–n junction is formed at the interface between PdO and SnO2, and such interface gives the enlargement of the electron depletion layer. Therefore, Pd further improved the resistance against hydroxyl poisoning of the SnO2 surface in humid air. In addition, although the sensor based on neat SnO2 did not respond to low-concentration CH4 at 200–400 °C, both the sensors based on the Pd-loaded SnO2 samples exhibited high sensor response to 200 ppm CH4 in a humid atmosphere. The Pd-SnO2 obtained by the new loading method exhibited a higher response to CH4 at lower concentrations in the lower operating temperature range (200–250 °C). This improvement in the sensor response is probably due to the catalytic activity of the larger Pd nanoparticles. According to high-resolution transmission electron microscopy–energy-dispersive X-ray spectroscopy images, the new loading method successfully provided Pd-loaded SnO2 nanoparticles with Pd nanoparticles dispersed uniformly on the SnO2 particle surface. The average particle size of Pd nanoparticles loaded on the surface of SnO2 by the new loading method was slightly larger than that of the Pd nanoparticles loaded by the impregnation method. As the Pd particle size increases, it is thought that crystalline PdO particles are formed more easily, thereby improving the combustion activity of CH4 under humid conditions. These results are of great significance for further decreasing the energy consumption of the CH4 sensor and increasing its sensor response in humid atmospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Wang T, Tan L, Xie S, Ma B (2018) Development and applications of common utility tunnels in China. Tunn Undergr Sp Technol 76:92–106. https://doi.org/10.1016/j.tust.2018.03.006

    Article  Google Scholar 

  2. Qihu Q (2016) Present state, problems and development trends of urban underground space in China. Tunn Undergr Sp Technol 55:280–289. https://doi.org/10.1016/j.tust.2015.11.007

    Article  Google Scholar 

  3. Kim B, Lu Y, Hannon A et al (2013) Low temperature Pd/SnO2 sensor for carbon monoxide detection. Sensors Actuators, B Chem 177:770–775. https://doi.org/10.1016/j.snb.2012.11.020

    Article  CAS  Google Scholar 

  4. Bhattacharyya P, Basu PK, Mondal B, Saha H (2008) A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane. Microelectron Reliab 48:1772–1779. https://doi.org/10.1016/j.microrel.2008.07.063

    Article  CAS  Google Scholar 

  5. Shaalan NM, Rashad M, Moharram AH, Abdel-Rahim MA (2016) Promising methane gas sensor synthesized by microwave-assisted Co3O4 nanoparticles. Mater Sci Semicond Process 46:1–5. https://doi.org/10.1016/j.mssp.2016.01.020

    Article  CAS  Google Scholar 

  6. Roy S, Saha H, Sarkar CK (2010) High sensitivity methane sensor by chemically deposited nanocrystalline ZnO thin film. Int J Smart Sens Intell Syst 3:605–620

    CAS  Google Scholar 

  7. Sheikhi Mehrabadi Z, Ahmadpour A, Shahtahmasebi N, Bagheri Mohagheghi MM (2011) Synthesis and characterization of Cu doped cobalt oxide nanocrystals as methane gas sensors. Phys Scr 84:1–4. https://doi.org/10.1088/0031-8949/84/01/015801

    Article  CAS  Google Scholar 

  8. Nagai D, Nishibori M, Itoh T et al (2015) Ppm level methane detection using micro-thermoelectric gas sensors with Pd/Al2O3 combustion catalyst films. Sensors Actuators, B Chem 206:488–494. https://doi.org/10.1016/j.snb.2014.09.059

    Article  CAS  Google Scholar 

  9. Wang W, Hu H, Liu X et al (2016) Development of a room temperature SAW methane gas sensor incorporating a supramolecular cryptophane A coating. Sensors (Switzerland) 16(1):73–83. https://doi.org/10.3390/s16010073

    Article  CAS  Google Scholar 

  10. Sun P, Jiang Y, Xie G et al (2009) A room temperature supramolecular-based quartz crystal microbalance (QCM) methane gas sensor. Sensors Actuators, B Chem 141:104–108. https://doi.org/10.1016/j.snb.2009.06.012

    Article  CAS  Google Scholar 

  11. Zhu Z, Xu Y, Jiang B (2012) A one ppm NDIR methane gas sensor with single frequency filter denoising algorithm. Sensors (Switzerland) 12:12729–12740. https://doi.org/10.3390/s120912729

    Article  CAS  Google Scholar 

  12. Dong L, Li C, Sanchez NP et al (2016) Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser. Appl Phys Lett. https://doi.org/10.1063/1.4939452

    Article  Google Scholar 

  13. Schilt S, Besson JP, Thévenaz L (2006) Near-infrared laser photoacoustic detection of methane: The impact of molecular relaxation. Appl Phys B Lasers Opt 82:319–329. https://doi.org/10.1007/s00340-005-2076-y

    Article  CAS  Google Scholar 

  14. Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv from Asia 7:63–75. https://doi.org/10.1023/A:1023436725457

    Article  CAS  Google Scholar 

  15. Vuong NM, Hieu NM, Hieu HN et al (2014) Ni2O3-decorated SnO2 particulate films for methane gas sensors. Sensors Actuators, B Chem 192:327–333. https://doi.org/10.1016/j.snb.2013.10.117

    Article  CAS  Google Scholar 

  16. Amutha A, Amirthapandian S, Prasad AK et al (2015) Methane gas sensing at relatively low operating temperature by hydrothermally prepared SnO2 nanorods. J Nanoparticle Res 17:1–12. https://doi.org/10.1007/s11051-015-3089-z

    Article  CAS  Google Scholar 

  17. Mounasamy V, Mani GK, Ponnusamy D et al (2020) Investigation on CH4 sensing characteristics of hierarchical V2O5 nanoflowers operated at relatively low temperature using chemiresistive approach. Anal Chim Acta 1106:148–160. https://doi.org/10.1016/j.aca.2020.01.060

    Article  CAS  Google Scholar 

  18. Ruscic B (2015) Active thermochemical tables: sequential bond dissociation enthalpies of methane, ethane, and methanol and the related thermochemistry. J Phys Chem A 119:7810–7837. https://doi.org/10.1021/acs.jpca.5b01346

    Article  CAS  Google Scholar 

  19. Ogawa H, Nishikawa M, Abe A (1982) Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J Appl Phys 53:4448–4455. https://doi.org/10.1063/1.331230

    Article  CAS  Google Scholar 

  20. Oprea A, Moretton E, Bârsan N et al (2006) Conduction model of SnO2 thin films based on conductance and Hall effect measurements. J Appl Phys. https://doi.org/10.1063/1.2229802

    Article  Google Scholar 

  21. Suematsu K, Ma N, Watanabe K et al (2018) Effect of humid aging on the oxygen adsorption in SnO2 gas sensors. Sensors (Switzerland) 18:1–11. https://doi.org/10.3390/s18010254

    Article  CAS  Google Scholar 

  22. Quaranta F, Rella R, Siciliano P et al (1999) Novel gas sensor based on SnO2/Os thin film for the detection of methane at low temperature. Sensors Actuators, B Chem 58:350–355. https://doi.org/10.1016/S0925-4005(99)00095-7

    Article  CAS  Google Scholar 

  23. Xue D, Wang P, Zhang Z, Wang Y (2019) Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: A combined experimental and first-principle study. Sensors Actuators, B Chem 296(126710):1–10. https://doi.org/10.1016/j.snb.2019.126710

    Article  CAS  Google Scholar 

  24. Oleksenko LP, Fedorenko GV, Maksymovych NP (2017) Platinum-containing adsorption-semiconductor sensors based on nanosized tin dioxide for methane detection. Theor Exp Chem 53:259–264. https://doi.org/10.1007/s11237-017-9523-9

    Article  CAS  Google Scholar 

  25. Malyshev VV, Pislyakov AV (2009) Metal oxide semiconductors based on tin dioxide: Gas-sensitivity to methane in a wide range of temperatures, concentrations and humidities of the gas phase. J Anal Chem 64:90–100. https://doi.org/10.1134/S1061934809010171

    Article  CAS  Google Scholar 

  26. Choi JK, Hwang IS, Kim SJ et al (2010) Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sensors Actuators, B Chem 150:191–199. https://doi.org/10.1016/j.snb.2010.07.013

    Article  CAS  Google Scholar 

  27. Yang DJ, Kamienchick I, Youn DY et al (2010) Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv Funct Mater 20:4258–4264. https://doi.org/10.1002/adfm.201001251

    Article  CAS  Google Scholar 

  28. Fedorenko G, Oleksenko L, Maksymovych N et al (2017) Semiconductor gas sensors based on Pd/SnO2 nanomaterials for methane detection in air. Nanoscale Res Lett 12(1):329. https://doi.org/10.1186/s11671-017-2102-0

    Article  CAS  Google Scholar 

  29. Oleksenko LP, Fedorenko GV, Maksymovych NP (2019) Highly sensitive to methane sensor materials based on Nano-Pd/SnO2. Theor Exp Chem 55:132–136. https://doi.org/10.1007/s11237-019-09604-7

    Article  CAS  Google Scholar 

  30. Chen W, Zhou Q, Gao T et al (2013) Pd-doped SnO2-based sensor detecting characteristic fault hydrocarbon gases in transformer oil. J Nanomater 2013:1–9. https://doi.org/10.1155/2013/127345

    Article  CAS  Google Scholar 

  31. Kim HR, Haensch A, Kim ID et al (2011) The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies. Adv Funct Mater 21:4456–4463. https://doi.org/10.1002/adfm.201101154

    Article  CAS  Google Scholar 

  32. Suematsu K, Sasaki M, Ma N et al (2016) Antimony-doped tin dioxide gas sensors exhibiting high stability in the sensitivity to humidity changes. ACS Sensors 1:913–920. https://doi.org/10.1021/acssensors.6b00323

    Article  CAS  Google Scholar 

  33. Yamazoe N, Suematsu K, Shimanoe K (2012) Extension of receptor function theory to include two types of adsorbed oxygen for oxide semiconductor gas sensors. Sensors Actuators, B Chem 163:128–135. https://doi.org/10.1016/j.snb.2012.01.020

    Article  CAS  Google Scholar 

  34. Ma N, Suematsu K, Yuasa M et al (2015) Effect of water vapor on Pd-loaded SNo2 nanoparticles gas sensor. ACS Appl Mater Interfaces 7:5863–5869. https://doi.org/10.1021/am509082w

    Article  CAS  Google Scholar 

  35. Ma N, Suematsu K, Yuasa M, Shimanoe K (2015) Pd Size Effect on the gas sensing properties of Pd-loaded SnO2 in humid atmosphere. ACS Appl Mater Interfaces 7:15618–15625. https://doi.org/10.1021/acsami.5b04380

    Article  CAS  Google Scholar 

  36. Stakheev AY, Batkin AM, Teleguina NS et al (2013) Particle size effect on CH4 oxidation over noble metals: Comparison of Pt and Pd catalysts. Top Catal 56:306–310. https://doi.org/10.1007/s11244-013-9971-y

    Article  CAS  Google Scholar 

  37. Ribeiro FH, Chow M, Dalla Betta RA (1994) Kinetics of the complete oxidation of methane over supported palladium catalysts. J Catal 146:537–544. https://doi.org/10.1006/jcat.1994.1092

    Article  CAS  Google Scholar 

  38. Murata K, Ohyama J, Yamamoto Y et al (2020) Methane Combustion over Pd/Al2O3Catalysts in the Presence of Water: Effects of Pd Particle Size and Alumina Crystalline Phase. ACS Catal 10:8149–8156. https://doi.org/10.1021/acscatal.0c02050

    Article  CAS  Google Scholar 

  39. Teranishi T, Miyake M (1998) Size control of palladium nanoparticles and their crystal structures. Chem Mater 10:594–600. https://doi.org/10.1021/cm9705808

    Article  CAS  Google Scholar 

  40. Baeza JA, Calvo L, Gilarranz MA et al (2012) Catalytic behavior of size-controlled palladium nanoparticles in the hydrodechlorination of 4-chlorophenol in aqueous phase. J Catal 293:85–93. https://doi.org/10.1016/j.jcat.2012.06.009

    Article  CAS  Google Scholar 

  41. Lou XW, Wang Y, Yuan C et al (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18:2325–2329. https://doi.org/10.1002/adma.200600733

    Article  CAS  Google Scholar 

  42. Ma J, Liu Y, Zhang H et al (2014) Synthesis and high sensing properties of a single Pd-doped SnO2 nanoribbon. Nanoscale Res Lett 9:1–10. https://doi.org/10.1186/1556-276X-9-503

    Article  CAS  Google Scholar 

  43. Yao L, Li Y, Ran Y, Yang Y, Zhao R, Su L, Kong Y, Ma D, Chen Y, Wang Y (2020) Construction of novel Pd-SnO2 composite nanoporous structure as a high-response sensor for methane gas. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2020.154063

    Article  Google Scholar 

  44. Suematsu K, Uchino H, Mizukami T et al (2019) Oxygen adsorption on ZrO2-loaded SnO2 gas sensors in humid atmosphere. J Mater Sci 54:3135–3143. https://doi.org/10.1007/s10853-018-3020-y

    Article  CAS  Google Scholar 

  45. Deivasegamani R, Karunanidhi G, Santhosh C et al (2017) Chemoresistive sensor for hydrogen using thin films of tin dioxide doped with cerium and palladium. Microchim Acta 184:4765–4773. https://doi.org/10.1007/s00604-017-2514-7

    Article  CAS  Google Scholar 

  46. Suematsu K, Shin Y, Hua Z et al (2014) Nanoparticle cluster gas sensor: controlled clustering of SnO2 nanoparticles for highly sensitive toluene detection. ACS Appl Mater Interfaces 6:5319–5326. https://doi.org/10.1021/am500944a

    Article  CAS  Google Scholar 

  47. Sun Y, Zhao Z, Suematsu K et al (2020) Rapid and stable detection of carbon monoxide in changing humidity atmospheres using clustered In2O3/CuO nanospheres. ACS Sensors 5:1040–1049. https://doi.org/10.1021/acssensors.9b02557

    Article  CAS  Google Scholar 

  48. Wagner T, Bauer M, Sauerwald T et al (2011) X-ray absorption near-edge spectroscopy investigation of the oxidation state of Pd species in nanoporous SnO2 gas sensors for methane detection. Thin Solid Films 520:909–912. https://doi.org/10.1016/j.tsf.2011.04.187

    Article  CAS  Google Scholar 

  49. Nasresfahani S, Sheikhi MH, Tohidi M, Zarifkar A (2017) Methane gas sensing properties of Pd-doped SnO2/reduced graphene oxide synthesized by a facile hydrothermal route. Mater Res Bull 89:161–169. https://doi.org/10.1016/j.materresbull.2017.01.032

    Article  CAS  Google Scholar 

  50. Kida T, Kuroiwa T, Yuasa M et al (2008) Study on the response and recovery properties of semiconductor gas sensors using a high-speed gas-switching system. Sensors Actuators, B Chem 134:928–933. https://doi.org/10.1016/j.snb.2008.06.044

    Article  CAS  Google Scholar 

  51. Haridas D, Gupta V (2012) Enhanced response characteristics of SnO2 thin film based sensors loaded with Pd clusters for methane detection. Sensors Actuators, B Chem 166–167:156–164. https://doi.org/10.1016/j.snb.2012.02.026

    Article  CAS  Google Scholar 

  52. Hu J, Gao F, Zhao Z et al (2016) Synthesis and characterization of Cobalt-doped ZnO microstructures for methane gas sensing. Appl Surf Sci 363:181–188. https://doi.org/10.1016/j.apsusc.2015.12.024

    Article  CAS  Google Scholar 

  53. Zhang D, Chang H, Sun Y et al (2017) Fabrication of platinum-loaded cobalt oxide/molybdenum disulfide nanocomposite toward methane gas sensing at low temperature. Sensors Actuators, B Chem 252:624–632. https://doi.org/10.1016/j.snb.2017.06.063

    Article  CAS  Google Scholar 

  54. Safonova OV, Neisius T, Ryzhikov A et al (2005) Characterization of the H2 sensing mechanism of Pd-promoted SnO2 by XAS in operando conditions. Chem Commun. https://doi.org/10.1039/b509826b

    Article  Google Scholar 

  55. Kolmakov A, Klenov DO, Lilach Y et al (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5:667–673. https://doi.org/10.1021/nl050082v

    Article  CAS  Google Scholar 

  56. Nemade KR, Waghuley SA (2014) In situ synthesis of graphene/SnO2 quantum dots composites for chemiresistive gas sensing. Mater Sci Semicond Process 24:126–131. https://doi.org/10.1016/j.mssp.2014.02.047

    Article  CAS  Google Scholar 

  57. Basu S, Basu PK (2009) Nanocrystalline metal oxides for methane sensors: role of noble metals. J Sensors 29:777–790. https://doi.org/10.1155/2009/861968

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) (JP19K15659 and JP19H02437). It was also supported by Chinese Scholarship Council (CSC) scholarship to Chengcheng Liu. This work was partially supported by Paloma environmental technology development foundation. We would like to thank Associate Prof. Hikaru Saito for observation of TEM-EDX mapping. We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kengo Shimanoe.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Suematsu, K., Uchiyama, A. et al. Impact of Pd nanoparticle loading method on SnO2 surface for natural gas detection in humid atmosphere. J Mater Sci 56, 13975–13988 (2021). https://doi.org/10.1007/s10853-021-06214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06214-4

Navigation