Skip to main content
Log in

A projected splitting method for vertical tensor complementarity problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, the vertical tensor complementarity problem (VTCP) is reformulated as the projected equation. After then, a projected splitting iterative method for the VTCP is proposed and corresponding monotone convergence analysis on the projected splitting method for the VTCP associated with Z-tensors is investigated under the condition that the feasible set of the involved problem is nonempty. Numerical examples are given to illustrate the efficiency of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferri, M., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)

    Article  MathSciNet  Google Scholar 

  2. Cottle, R., Dantzig, G.: A generalization of the linear complementarity problem. J. Comb. Theory. 8, 79–90 (1970)

    Article  MathSciNet  Google Scholar 

  3. Gowda, G.S., Szajder, R.: The generalized order linear complementarity problem. SIAM J. Matrix Anal. Appl. 15(3), 779–795 (1994)

    Article  MathSciNet  Google Scholar 

  4. Du, S., Ding, W., Wei, Y.: Acceptable solutions and backward errors for tensor complementarity problems. J. Optim. Theory Appl. 188, 260–276 (2021)

    Article  MathSciNet  Google Scholar 

  5. Che, M., Qi, L., Wei, Y.: The generalized order tensor complementarity problems. Numer. Math. Theor. Meth. Appl. 13(1), 131–149 (2020)

    Article  MathSciNet  Google Scholar 

  6. Song, Y., Qi, L.: Properties of tensor complementarity problem and some classes of structured tensors. Ann. Appl. Math. 33, 308–323 (2017)

    MathSciNet  Google Scholar 

  7. Huang, Z., Qi, L.: Formulating an \(n\)-person noncoorperative game as a tensor complementarity problem. Comput. Optim. Appl. 66, 557–576 (2017)

    Article  MathSciNet  Google Scholar 

  8. Huang, Z., Qi, L.: Tensor complementarity problems-part III: applications. J. Optim. Theory Appl. 183, 771–791 (2019)

    Article  MathSciNet  Google Scholar 

  9. Huang, Z., Qi, L.: Tensor complementarity problems-part I: basic theory. J. Optim. Theory Appl. 183, 1–23 (2019)

    Article  MathSciNet  Google Scholar 

  10. Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to \(Z\)-tensor complementarity problems. Optim. Lett. 11, 471–482 (2017)

    Article  MathSciNet  Google Scholar 

  11. Xie, S., Li, D., Xu, H.: An iterative method for finding the least solution of the tensor complementarity problem. J. Optim. Theory Appl. 175, 119–136 (2017)

    Article  MathSciNet  Google Scholar 

  12. Liu, D., Li, W., Vong, S.: Tensor complementarity problems: the GUS-property and an algorithm. Lin. Multilin. Algeb. 66, 1726–1749 (2018)

    Article  MathSciNet  Google Scholar 

  13. Han, L.: A continuation method for tensor complementarity problems. J. Optim. Theory Appl. 180, 949–963 (2019)

    Article  MathSciNet  Google Scholar 

  14. Zhang, K., Chen, H., Zhao, P.: A potential reduction method for tensor complementarity problems. J. Ind. Manag. Optim. 15, 429–443 (2019)

    Article  MathSciNet  Google Scholar 

  15. Du, S., Zhang, L.: A mixed integer programming approach to the tensor complementarity problem. J. Glob. Optim. 73, 789–800 (2019)

    Article  MathSciNet  Google Scholar 

  16. Zhao, X., Fan, F.: A semidefinite method for tensor complementarity problems. Optim. Method Softw. 34, 758–769 (2019)

    Article  MathSciNet  Google Scholar 

  17. Guan, H., Li, D.: Linearized methods for tensor complementarity problems. J. Optim. Theory Appl. 184, 972–987 (2020)

    Article  MathSciNet  Google Scholar 

  18. Dai, P.-F.: A fixed point iterative method for tensor complementarity problems. J. Sci. Comput. 84, 49 (2020)

    Article  MathSciNet  Google Scholar 

  19. Dai, P.-F., Wu, S.-L.: The GUS-property and modulus-based methods for tensor complementarity problems. J. Optim. Theory Appl. 195, 976–1006 (2022)

    Article  MathSciNet  Google Scholar 

  20. Wang, X., Che, M., Wei, Y.: Global uniqueness and solvability of tensor complementarity problems for \(H^{+}\)-tensors. Numer. Algor. 84, 567–590 (2020)

    Article  MathSciNet  Google Scholar 

  21. Wang, X., Che, M., Qi, L., Wei, Y.: Modified gradient dynamic approach to the tensor complementarity problem. Optim. Methods Softw. 35(2), 394–415 (2020)

    Article  MathSciNet  Google Scholar 

  22. Wang, X., Che, M., Wei, Y.: Randomized Kaczmarz methods for tensor complementarity problems. Comput. Optim. Appl. 82(3), 595–615 (2022)

    Article  MathSciNet  Google Scholar 

  23. Wei, P., Wang, X., Wei, Y.: Neural network models for time-varying tensor complementarity problems. Neurocomputing 523, 18–32 (2023)

    Article  Google Scholar 

  24. Qi, L., Huang, Z.: Tensor complementarity problems-part II: solution methods. J. Optim. Theory Appl. 183, 365–385 (2019)

    Article  MathSciNet  Google Scholar 

  25. Meng, R., Huang, Z., Wang, Y.: Existence of the least element solution of the vertical block Z-tensor complementarity problem. Optim. Lett. (2023). https://doi.org/10.1007/s11590-023-01977-y

    Article  MathSciNet  Google Scholar 

  26. Mangasarian, O.: Solution of symmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 22, 465–485 (1977)

    Article  MathSciNet  Google Scholar 

  27. Ahn, B.: Solution of nonsymmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 33, 175–185 (1981)

    Article  MathSciNet  Google Scholar 

  28. Cryer, W.: The solution of a quadratic programming problem using systematic overrelaxation. SIAM J. Control 9, 385–392 (1971)

    Article  MathSciNet  Google Scholar 

  29. Mezzadri, F., Galligani, E.: Splitting methods for a class of horizontal linear complementarity problems. J. Optim. Theory Appl. 180(2), 500–517 (2019)

    Article  MathSciNet  Google Scholar 

  30. Mezzadri, F., Galligani, E.: Projected splitting methods for vertical linear complementarity problems. J. Optim. Theory Appl. 193, 598–620 (2022)

    Article  MathSciNet  Google Scholar 

  31. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput. 40, 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  32. Lim L.-H.: Singular values and eigenvalues of tensors: a variational approach, in: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 05, vol.1, IEEE Computer Society Press, Piscataway, NJ, 129-132 (2005)

  33. Tian, L., Wang, Y.: Solving tensor complementarity problems with Z-tensors via a weighted fixed point method. J. Ind. Manag. Optim. 19, 3444–3458 (2023)

    Article  MathSciNet  Google Scholar 

  34. Gowda M. S., Luo Z., Qi L., Xiu N.: Z-tensors and complementarity problems, arXiv:1510.07933v2, (2015)

  35. Xu, H.-R., Li, D.-H., Xie, S.-L.: An equivalent tensor equation to the tensor complementarity problem with positive semi-definite Z-tensor. Optim. Lett. 13, 685–694 (2019)

    Article  MathSciNet  Google Scholar 

  36. Huang, Z., Li, Y.-F., Wang, Y.: A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors. J. Global Optim. (2022). https://doi.org/10.1007/s10898-022-01263-8

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2023 Professor and Doctor Launch Program of Hanshan Normal University (QD202325), the Fund provided by the Department of Education of Guangdong Province (2023KTSCX###), the National Natural Science Foundation of China (11961082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Liang Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, PF., Wu, SL. A projected splitting method for vertical tensor complementarity problems. Optim Lett 18, 1005–1021 (2024). https://doi.org/10.1007/s11590-023-02030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-023-02030-8

Keywords

Navigation