Skip to main content
Log in

On lattice point counting in \(\varDelta \)-modular polyhedra

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Let a polyhedron P be defined by one of the following ways:

  1. (i)

    \(P = \{x \in {{\,\mathrm{{\mathbb {R}}}\,}}^n :A x \le b\}\), where \(A \in {{\,\mathrm{{\mathbb {Z}}}\,}}^{(n+k) \times n}\), \(b \in {{\,\mathrm{{\mathbb {Z}}}\,}}^{(n+k)}\) and \({{\,\mathrm{rank}\,}}A = n\),

  2. (ii)

    \(P = \{x \in {{\,\mathrm{{\mathbb {R}}}\,}}_+^n :A x = b\}\), where \(A \in {{\,\mathrm{{\mathbb {Z}}}\,}}^{k \times n}\), \(b \in {{\,\mathrm{{\mathbb {Z}}}\,}}^{k}\) and \({{\,\mathrm{rank}\,}}A = k\),

and let all rank order minors of A be bounded by \(\varDelta \) in absolute values. We show that the short rational generating function for the power series

$$\begin{aligned} \sum \limits _{m \in P \cap {{\,\mathrm{{\mathbb {Z}}}\,}}^n} {{\,\mathrm{{\mathbf {x}}}\,}}^m \end{aligned}$$

can be computed with the arithmetical complexity \( O\left( T_{{\mathrm{SNF}}}(d) \cdot d^{k} \cdot d^{\log _2 \varDelta }\right) , \) where k and \(\varDelta \) are fixed, \(d = \dim P\), and \(T_{{\mathrm{SNF}}}(m)\) is the complexity of computing the Smith Normal Form for \(m \times m\) integer matrices. In particular, \(d = n\), for the case (i), and \(d = n-k\), for the case (ii). The simplest examples of polyhedra that meet the conditions (i) or (ii) are the simplices, the subset sum polytope and the knapsack or multidimensional knapsack polytopes. Previously, the existence of a polynomial time algorithm in varying dimension for the considered class of problems was unknown already for simplicies (\(k = 1\)). We apply these results to parametric polytopes and show that the step polynomial representation of the function \(c_P({{\,\mathrm{{\mathbf {y}}}\,}}) = |P_{{{\,\mathrm{{\mathbf {y}}}\,}}} \cap {{\,\mathrm{{\mathbb {Z}}}\,}}^n|\), where \(P_{{{\,\mathrm{{\mathbf {y}}}\,}}}\) is a parametric polytope, whose structure is close to the cases (i) or (ii), can be computed in polynomial time even if the dimension of \(P_{{{\,\mathrm{{\mathbf {y}}}\,}}}\) is not fixed. As another consequence, we show that the coefficients \(e_i(P,m)\) of the Ehrhart quasi-polynomial

$$\begin{aligned} \left| mP \cap {{\,\mathrm{{\mathbb {Z}}}\,}}^n\right| = \sum \limits _{j = 0}^n e_j(P,m)m^j \end{aligned}$$

can be computed with a polynomial-time algorithm, for fixed k and \(\varDelta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev, V.V., Zakharova, D.V.: Independent sets in the graphs with bounded minors of the extended incidence matrix. J. Appl. Ind. Math. 5, 14–18 (2011). https://doi.org/10.1134/S1990478911010029

    Article  MathSciNet  Google Scholar 

  2. Aliev, I., De Loera, J., Eisenbrand, F., Oertel, T., Weismantel, R.: The support of integer optimal solutions. SIAM J. Optim. 28, 2152–215 (2018). https://doi.org/10.1137/17M1162792

    Article  MathSciNet  MATH  Google Scholar 

  3. Artmann, S., Weismantel, R., Zenklusen, R.: A strongly polynomial algorithm for bimodular integer linear programming. In: Proceedings of 49th Annual ACM Symposium on Theory of Computing, pp. 1206–1219 (2017). https://doi.org/10.1145/3055399.3055473

  4. Artmann, S., Eisenbrand, F., Glanzer, C., Timm, O., Vempala, S., Weismantel, R.: A note on non-degenerate integer programs with small subdeterminants. Oper. Res. Lett. 44(5), 635–639 (2016). https://doi.org/10.1016/j.orl.2016.07.004

    Article  MathSciNet  MATH  Google Scholar 

  5. Baldoni, V., Berline, N., Köppe, M., Vergne, V.: Intermediate sums on polyhedra: computational and real Ehrhart theory. Mathematika 59, 1–22 (2013). https://doi.org/10.1112/S0025579312000101

    Article  MathSciNet  MATH  Google Scholar 

  6. Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. In Proceedings of the 34th Annual Symposium on Foundations of Computer Science, IEEE, New York, Nov., pp. 566–572. (1993) https://doi.org/10.1287/moor.19.4.769

  7. Barvinok, A.I.: Computing the Ehrhart quasi-polynomial of a rational simplex. Math. Comput. 75, 1449–1466 (2006). https://doi.org/10.1090/S0025-5718-06-01836-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Barvinok, A.: Integer Points in Polyhedra. European Mathematical Society, Zürich (2008)

    Book  Google Scholar 

  9. Barvinok, A., Pommersheim, J.: An algorithmic theory of lattice points in polyhedra. New Perspect. Algebraic Combin. 38, 91–147 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Barvinok, A., Woods, K.: Short rational generating functions for lattice point problems. J. Am. Math. Soc. 16, 957–979 (2003). https://doi.org/10.1090/S0894-0347-03-00428-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Bock, A., Faenza, Y., Moldenhauer, C., Vargas, R., Jacinto, A.: Solving the stable set problem in terms of the odd cycle packing number. In: Proceedings of 34th Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), vol. 29, pp. 187–198 (2014). https://doi.org/10.4230/LIPIcs.FSTTCS.2014.187

  12. Bonifas, N., Di Summa, M., Eisenbrand, F., Hähnle, N., Niemeier, M.: On subdeterminants and the diameter of polyhedra. Discrete Comput. Geom. 52(1), 102–115 (2014). https://doi.org/10.1007/s00454-014-9601-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Brion, M.: Points entiers dans les polyèdres convexes (French). Ann. Sci. Ecole Norm. Sup. 21(4), 653–663 (1988). https://doi.org/10.24033/asens.1572

    Article  MathSciNet  MATH  Google Scholar 

  14. Chirkov, A.Y., Gribanov, D.V., Malyshev, D.S., Pardalos, P.M., Veselov, S.I., Zolotykh, N.Y.: On the complexity of quasiconvex integer minimization problem. J. Glob. Optim. 73(4), 761–788 (2019). https://doi.org/10.1007/s10898-018-0729-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Clauss, P., Loechner, V.: Parametric Analysis of Polyhedral Iteration Spaces. J. VLSI Signal Process. Syst. Signal, Image Video Technol. 19, 179–194 (1998). https://doi.org/10.1023/A:1008069920230

    Article  Google Scholar 

  16. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, E.: Sensitivity theorems in integer linear programming. Math. Program. 34(3), 251–264 (1986). https://doi.org/10.1007/BF01582230

    Article  MathSciNet  MATH  Google Scholar 

  17. Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via M-ellipsoid coverings. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 11) 580–589 (2011) https://doi.org/10.1109/FOCS.2011.31

  18. Dadush, D.: Integer programming, lattice algorithms, and deterministic volume estimation. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), Georgia Institute of Technology (2012)

  19. De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point counting in rational convex polytopes. J. Symbol. Comput. 38(4), 1273–1302 (2004). https://doi.org/10.1016/j.jsc.2003.04.003

    Article  MathSciNet  MATH  Google Scholar 

  20. De Loera, J., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms and Applications, vol. 25. Springer, New York (2010)

    Book  Google Scholar 

  21. De Loera, Jesús A., Hemmecke R., Köppe M.: Algebraic And geometric ideas in the theory of discrete optimization. MOS-SIAM Series on Optimization (2012)

  22. Dyer, M., Kannan, R.: On Barvinok’s algorithm for counting lattice points in fixed dimension. Math. Oper. Res. 22(3), 545–549 (1997). https://doi.org/10.1287/moor.22.3.545

    Article  MathSciNet  MATH  Google Scholar 

  23. Ehrhart, E.: Polynômes arithmétiques et méthode des polyèdres en combinatoire. In: Volume 35 of International Series of Numerical Mathematics, Birkhauser Verlag, Basel/Stuttgart (1977)

  24. Ehrhart, E.: Sur un problème de géométrie diophantienne linéaire. II. Systèmes diophantiens linéaires. J. Reine Angew. Math. 227, 25–49 (1967)

    MathSciNet  Google Scholar 

  25. Eisenbrand, F., Shmonin, G.: Parametric integer programming in fixed dimension. Math. Oper. Res. 33 (2008). https://doi.org/10.1287/moor.1080.0320

  26. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the Steinitz lemma. ACM Trans. Algorithms 16(1) (2019) https://doi.org/10.1145/3340322

  27. Eisenbrand, F., Vempala, S.: Geometric random edge. Math. Program. 164, 325–339 (2017). https://doi.org/10.1007/s10107-016-1089-0

    Article  MathSciNet  MATH  Google Scholar 

  28. Glanzer, C., Weismantel, R., Zenklusen, R.: On the number of distinct rows of a matrix with bounded subdeterminants. SIAM J. Discrete Math. (2018). https://doi.org/10.1137/17M1125728

  29. Gomory, R.E.: On the relation between integer and non-integer solutions to linear programs. Proc. Natl. Acad. Sci. USA 53(2), 260–265 (1965). https://doi.org/10.1073/pnas.53.2.260

    Article  MathSciNet  MATH  Google Scholar 

  30. Gribanov, D.V.: The flatness theorem for some class of polytopes and searching an integer point. In: Batsyn, M.V., Kalyagin, V.A., Pardalos, P.M. (eds) Models, Algorithms and Technologies for Network Analysis. Springer Proceedings in Mathematics & Statistics, vol. 104, pp. 37–45 (2013). https://doi.org/10.1007/978-3-319-09758-9_4

  31. Gribanov, D.V., Chirkov, A.J.: The width and integer optimization on simplices with bounded minors of the constraint matrices. Optim. Lett. 10(6), 1179–1189 (2016). https://doi.org/10.1007/s11590-016-1048-y

    Article  MathSciNet  MATH  Google Scholar 

  32. Gribanov, D.V., Malyshev, D.S.: The computational complexity of three graph problems for instances with bounded minors of constraint matrices. Discret. Appl. Math. 227, 13–20 (2017). https://doi.org/10.1016/j.dam.2017.04.025

    Article  MathSciNet  MATH  Google Scholar 

  33. Gribanov, D.V., Malyshev, D.S.: The computational complexity of dominating set problems for instances with bounded minors of constraint matrices. Discret. Optim. 29, 103–110 (2018). https://doi.org/10.1016/j.disopt.2018.03.002

    Article  MathSciNet  MATH  Google Scholar 

  34. Gribanov, D.V., Malyshev, D.S.: Integer conic function minimization based on the comparison oracle. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) Mathematical Optimization Theory and Operations Research. MOTOR 2019 Lecture Notes in Computer Science, vol. 11548. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22629-9_16

    Chapter  Google Scholar 

  35. Gribanov, D.V., Malyshev, D.S.: Minimization of even conic functions on the two-dimensional integral lattice. J. Appl. Ind. Math. 14, 56–72 (2020). https://doi.org/10.1134/S199047892001007X

    Article  MATH  Google Scholar 

  36. Gribanov, D.V., Veselov, S.I.: On integer programming with bounded determinants. Optim. Lett. 10(6), 1169–1177 (2016). https://doi.org/10.1007/s11590-015-0943-y

    Article  MathSciNet  MATH  Google Scholar 

  37. Gribanov, D.V., Malyshev, D.S., Pardalos, P.M., Veselov, S.I.: FPT-algorithms for some problems related to integer programming. J. Comb. Optim. 35(4), 1128–1146 (2018). https://doi.org/10.1007/s10878-018-0264-z

    Article  MathSciNet  MATH  Google Scholar 

  38. Gribanov, D.V., Malyshev, D.S., Veselov, S.I.: FPT-algorithm for computing the width of a simplex given by a convex hull. Mosc. Univ. Comput. Math. Cybern. 43(1), 1–11 (2019). https://doi.org/10.3103/S0278641919010084

    Article  MathSciNet  MATH  Google Scholar 

  39. Henk, M., Linke, E.: Note on the coefficients of rational Ehrhart quasi-polynomials of Minkowski-sums. Online J. Anal. Combin. 10, 12 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Hiroshi, H., Ryunosuke, O., Keńichiro, T.: Counting integral points in polytopes via numerical analysis of contour integration. Math. Oper. Res. 45(2), 455–464 (2020). https://doi.org/10.1287/moor.2019.0997

    Article  MathSciNet  MATH  Google Scholar 

  41. Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization. Springer, New York (1995)

    MATH  Google Scholar 

  42. Hu, T.C.: Integer Programming and Network Flows. Addison-Wesley Publishing Company, Reading (1970)

    Google Scholar 

  43. Jansen, K., Rohwedder, L.: On integer programming, discrepancy, and convolution (2018). arXiv:1803.04744

  44. Karmarkar, N.: A new polynomial time algorithm for linear programming. Combinatorica 4(4), 373–391 (1984). https://doi.org/10.1007/BF02579150

    Article  MathSciNet  MATH  Google Scholar 

  45. Khachiyan, L.G.: Polynomial algorithms in linear programming. Comput. Math. Math. Phys. 20(1), 53–72 (1980). https://doi.org/10.1007/BF01188714

    Article  MathSciNet  MATH  Google Scholar 

  46. Khovanskii, A.G., Pukhlikov, A.V.: The Riemann–Roch theorem for integrals and sums of quasipolynomials on virtual polytopes (Russian). Algebra i Analiz 4, 188–216 (1992); translation in St. Petersburg Math. J. 4 789–812 (1993)

  47. Köppe, M., Verdoolaege, S.: Computing parametric rational generating functions with a primal Barvinok algorithm. Electron. J. Combin. (2008). https://doi.org/10.37236/740

  48. Lasserre, J.B., Zeron, E.S.: An alternative algorithm for counting lattice points in a convex polytope. Math. Oper. Res. 30(3), 595–614 (2005). https://doi.org/10.1287/moor.1050.0145

    Article  MathSciNet  MATH  Google Scholar 

  49. Lawrence, J.: Rational-function-valued valuations on polyhedra. Discrete and computational geometry (New Brunswick, NJ, 1989/1990), DIMACS, Discrete Mathematics and Theoretical Computer Science, vol. 6, American Mathematical Society, Providence, RI, pp. 199–208 (1991)

  50. Lee, J., Paat, J., Stallknecht, I., Xu, L.: Improving proximity bounds using sparsity (2020) arXiv:2001.04659

  51. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  52. Loechner, V., Wilde, D.K.: Parameterized polyhedra and their vertices. Int. J. Parallel Prog. 25, 525–549 (1997). https://doi.org/10.1023/A:1025117523902

    Article  Google Scholar 

  53. Malyshev, D.S.: Boundary graph classes for some maximum induced subgraph problems. J. Combin. Optim. 27(2), 345–354 (2014). https://doi.org/10.1007/s10878-012-9529-0

    Article  MathSciNet  MATH  Google Scholar 

  54. Malyshev, D.S.: Classes of graphs critical for the edge list-ranking problem. J. Appl. Ind. Math. 8(2), 245–255 (2014). https://doi.org/10.1134/S1990478914020112

    Article  MathSciNet  Google Scholar 

  55. Malyshev, D.S.: A complexity dichotomy and a new boundary class for the dominating set problem. J. Comb. Optim. 32(1), 226–243 (2016). https://doi.org/10.1007/s10878-015-9872-z

    Article  MathSciNet  MATH  Google Scholar 

  56. Malyshev, D.S.: Critical elements in combinatorially closed families of graph classes. J. Appl. Ind. Math. 11(1), 99–106 (2017). https://doi.org/10.1134/S1990478917010112

    Article  MathSciNet  MATH  Google Scholar 

  57. Malyshev, D.S., Pardalos, P.M.: Critical hereditary graph classes: a survey. Optim. Lett. 10(8), 1593–1612 (2016). https://doi.org/10.1007/s11590-015-0985-1

    Article  MathSciNet  MATH  Google Scholar 

  58. McMullen, P.: Valuations and Dissections. Handbook of Convex Geometry, vol. B, North-Holland, Amsterdam (1993)

  59. McMullen, P.: The maximum number of faces of a convex polytope. Mathematika 17, 179–184 (1970)

    Article  MathSciNet  Google Scholar 

  60. McMullen, P.: Lattice invariant valuations on rational polytopes. Arch. Math. 31, 509–516 (1978). https://doi.org/10.1007/BF01226481

    Article  MathSciNet  MATH  Google Scholar 

  61. McMullen, P., Schneider, R.: Valuations on convex bodies. In: Gruber, P.M., Wills, J.M. (eds.) Convexity and Its Applications. Birkhäuser, Basel (1983). https://doi.org/10.1007/978-3-0348-5858-8_9

    Chapter  Google Scholar 

  62. Nesterov, Y.E., Nemirovsky, A.S.: Interior Point Polynomial Methods in Convex Programming. Society for Industrial and Applied Math, USA (1994)

    Book  Google Scholar 

  63. Paat, J., Schlöter, M., Weismantel, R.: The integrality number of an integer program (2019). arXiv:1904.06874

  64. Paat, J., Weismantel, R., Weltge, S.: Distances between optimal solutions of mixed integer programs. Math. Program. 179, 455–468 (2018). https://doi.org/10.1007/s10107-018-1323-z

    Article  MathSciNet  MATH  Google Scholar 

  65. Pferschy, U.: Dynamic programming revisited: improving knapsack algorithms. Computing 63(4), 419–430 (1999). https://doi.org/10.1007/s006070050042

    Article  MathSciNet  MATH  Google Scholar 

  66. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)

    MATH  Google Scholar 

  67. Sebö, A.: An introduction to empty lattice simplices. In: Cornuéjols G., Burkard R.E., Woeginger G.J. (eds) Integer Programming and Combinatorial Optimization. IPCO 1999. Lecture Notes in Computer Science, vol. 1610, pp. 400–414 (1999). https://doi.org/10.1007/3-540-48777-8_30

  68. Shevchenko, V.N.: Qualitative topics in integer linear programming (translations of mathematical monographs) (1996) AMS Book

  69. Shevchenko, V.N., Gruzdev, D.V.: A modification of the Fourier–Motzkin algorithm for constructing a triangulation and star development. J. Appl. Ind. Math. 2, 113–124 (2008). https://doi.org/10.1134/S1990478908010122

    Article  MathSciNet  Google Scholar 

  70. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1986)

    Book  Google Scholar 

  71. Storjohann, A., Labahn, G.: Asymptotically fast computation of Hermite normal forms of integer matrices. In: Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, 259–266 (1996). https://doi.org/10.1145/236869.237083

  72. Storjohann, A.: Near optimal algorithms for computing Smith normal forms of integer matrices. Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, pp. 267–274 (1996) 0.1145/236869.237084

  73. Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res. 34(2), 250–256 (1986). https://doi.org/10.1287/opre.34.2.250

    Article  MathSciNet  MATH  Google Scholar 

  74. Verdoolaege, S., Woods, K.: Counting with rational generating functions. J. Symb. Comput. 43(2), 75–91 (2008). https://doi.org/10.1016/j.jsc.2007.07.007

    Article  MathSciNet  MATH  Google Scholar 

  75. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting integer points in parametric polytopes using Barvinok’s rational functions. Algorithmica 48, 37–66 (2007). https://doi.org/10.1007/s00453-006-1231-0

    Article  MathSciNet  MATH  Google Scholar 

  76. Veselov, S.I., Shevchenko, V.N.: Estimates of minimal distance between point of some integral lattices. In: Combinatorial-Algebraic Methods in Applied Mathematics, pp. 26–33, Gorky state university (1980 in Russian)

  77. Veselov, S.I., Chirkov, A.J.: Integer program with bimodular matrix. Discret. Optim. 6(2), 220–222 (2009). https://doi.org/10.1016/j.disopt.2008.12.002

    Article  MathSciNet  MATH  Google Scholar 

  78. Veselov, S.I., Shevchenko, V.N.: On the minor characteristics of orthogonal integer lattices. Diskretn. Anal. Issled. Oper. 15(4), 25–29 (2008). (in Russian)

    MathSciNet  MATH  Google Scholar 

  79. Veselov, S.I., Gribanov, D.V., Zolotykh, NYu., Chirkov, AYu.: A polynomial algorithm for minimizing discrete convic functions in fixed dimension. Discret. Appl. Math. 283, 11–19 (2020). https://doi.org/10.1016/j.dam.2019.10.006

    Article  MathSciNet  MATH  Google Scholar 

  80. Winder, R.O.: Partitions of N-space by hyperplanes. SIAM J. Appl. Math. 14(4), 811–818 (1966)

    Article  MathSciNet  Google Scholar 

  81. Zhendong, W.: Computing the Smith forms of integer matrices and solving related problems. University of Delaware Newark, USA (2005)

Download references

Acknowledgements

The article was prepared within the framework of the Basic Research Program at the National Research University Higher School of Economics (HSE). The authors thank the anonymous referees for their useful remarks that helped to make the text and proofs shorter and clearer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Gribanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribanov, D.V., Zolotykh, N.Y. On lattice point counting in \(\varDelta \)-modular polyhedra. Optim Lett 16, 1991–2018 (2022). https://doi.org/10.1007/s11590-021-01744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01744-x

Keywords

Navigation