Skip to main content
Log in

Characterizing the solution set of convex optimization problems without convexity of constraints

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Some characterizations of solution sets of a convex optimization problem with a convex feasible set described by tangentially convex constraints are given. The results are expressed in terms of convex subdifferentials, tangential subdifferentials, and Lagrange multipliers. In order to characterize the solution set, we first introduce the so-called pseudo Lagrangian-type function and establish a constant pseudo Lagrangian-type property for the solution set. This property is still valid in the case of a pseudoconvex locally Lipschitz objective function, and then used to derive Lagrange multiplier-based characterizations of the solution set. Some examples are given to illustrate the significances of our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A tangentially convex function \(f:{\mathbb {R}}^n \rightarrow {\mathbb {R}}\) at \(x \in {\mathbb {R}}^n\) is said to be pseudoconvex atx (see [26]) if \( \forall y\in {\mathbb {R}}^n,\; f'(x,y-x)\ge 0 \Longrightarrow f(y)\ge f(x). \)

References

  1. Mangasarian, O.L.: Error bounds for nondegenerate monotone linear complementarity problems. Math. Program. 48, 437–445 (1990)

    Article  MathSciNet  Google Scholar 

  2. Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31, 1340–1359 (1993)

    Article  MathSciNet  Google Scholar 

  3. Feltenmark, S., Kiwiel, K.: Dual applications of proximal bundle methods, including Lagrangian relaxation of nonconvex problems. SIAM J. Optim. 10(3), 697–721 (2000)

    Article  MathSciNet  Google Scholar 

  4. Mangasarian, O.L.: A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7, 21–26 (1988)

    Article  MathSciNet  Google Scholar 

  5. Burke, J.V., Ferris, M.: Characterization of solution sets of convex programs. Oper Res Lett 10, 57–60 (1991)

    Article  MathSciNet  Google Scholar 

  6. Jeyakumar, V., Yang, X.Q.: Characterizing the solution sets of pseudo-linear programs. J. Optim. Theory Appl. 87, 747–755 (1995)

    Article  MathSciNet  Google Scholar 

  7. Ivanov, V.I.: First order characterizations of pseudoconvex functions. Serdica Math. J. 27, 203–218 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Ivanov, V.I.: Characterizations of the solution sets of generalized convex minimization problems. Serdica Math. J. 29, 1–10 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Wu, Z.L., Wu, S.Y.: Characterizations of the solution sets of convex programs and variational inequality problems. J. Optim. Theory Appl. 130, 339–358 (2006)

    Article  MathSciNet  Google Scholar 

  10. Yang, X.M.: On characterizing the solution sets of pseudoinvex extremum problems. J. Optim. Theory Appl. 140, 537–542 (2009)

    Article  MathSciNet  Google Scholar 

  11. Castellani, M., Giuli, M.: A characterization of the solution set of pseudoconvex extremum problems. J. Convex Anal. 19, 113–123 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Ivanov, V.I.: Characterizations of pseudoconvex functions and semistrictly quasiconvex ones. J. Glob. Optim. 57, 677–693 (2013)

    Article  MathSciNet  Google Scholar 

  13. Ivanov, V.I.: Optimality conditions and characterizations of the solution sets in generalized convex problems and variational inequalities. J. Optim. Theory Appl. 158, 65–84 (2013)

    Article  MathSciNet  Google Scholar 

  14. Jeyakumar, V., Lee, G.M., Dinh, N.: Lagrange multiplier conditions characterizing optimal solution sets of cone-constrained convex programs. J. Optim. Theory Appl. 123, 83–103 (2004)

    Article  MathSciNet  Google Scholar 

  15. Jeyakumar, V., Lee, G.M., Dinh, N.: Characterizations of solution sets of convex vector minimization problems. Eur. J. Oper Res. 174, 1380–1395 (2006)

    Article  MathSciNet  Google Scholar 

  16. Dinh, N., Jeyakumar, V., Lee, G.M.: Lagrange multiplier characterizations of solution sets of constrained pseudolinear optimization problems. Optimization 55, 241–250 (2006)

    Article  MathSciNet  Google Scholar 

  17. Son, T.Q., Dinh, N.: Characterizations of optimal solution sets of convex infinite programs. Top 16, 147–163 (2008)

    Article  MathSciNet  Google Scholar 

  18. Lalitha, C.S., Mehta, M.: Characterizations of solution sets of mathematical programs in terms of Lagrange multipliers. Optimization 58, 995–1007 (2009)

    Article  MathSciNet  Google Scholar 

  19. Zhao, K.Q., Yang, X.M.: Characterizations of the solution set for a class of nonsmooth optimization problems. Optim. Lett. 7, 685–694 (2013)

    Article  MathSciNet  Google Scholar 

  20. Mishra, S.K., Upadhyay, B.B., An, L.T.H.: Lagrange multiplier characterizations of solution sets of constrained nonsmooth pseudolinear optimization problems. J. Optim. Theory Appl. 160, 763–777 (2014)

    Article  MathSciNet  Google Scholar 

  21. Son, T.Q., Kim, D.S.: A new approach to characterize the solution set of a pseudoconvex programming problem. J. Comput. Appl. Math. 261, 333–340 (2014)

    Article  MathSciNet  Google Scholar 

  22. Miao, X.H., Chen, J.S.: Characterizations of solution sets of cone-constrained convex programming problems. Optim. Lett. 9, 1433–1445 (2015)

    Article  MathSciNet  Google Scholar 

  23. Lee, G.M., Yao, J.C.: On solution sets for robust optimization problems. J. Nonlinear Convex Anal. 17(5), 957–966 (2016)

    MathSciNet  Google Scholar 

  24. Lasserre, J.B.: On representations of the feasible set in convex optimization. Optim. Lett. 4, 1–5 (2010)

    Article  MathSciNet  Google Scholar 

  25. Dutta, J., Lalitha, C.S.: Optimality conditions in convex optimization revisited. Optim. Lett. 7(2), 221–229 (2013)

    Article  MathSciNet  Google Scholar 

  26. Martinez-Legaz, J.E.: Optimality conditions for pseudoconvex minimization over convex sets defined by tangentially convex constraints. Optim. Lett. 9, 1017–1023 (2015)

    Article  MathSciNet  Google Scholar 

  27. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  28. Pshenichnyi, B.N.: Necessary Conditions for an Extremum. Marcel Dekker Inc, New York (1971)

    MATH  Google Scholar 

  29. Lemaréchal, C.: An introduction to the theory of nonsmooth optimization. Optimization 17(6), 827–858 (1986)

    Article  MathSciNet  Google Scholar 

  30. Yamamoto, S., Kuroiwa, D.: Constraint qualifications for KKT optimality condition in convex optimization with locally Lipschitz inequality constraints. Linear Nonlinear Anal. 2(1), 101–111 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Chieu, N.H., Jeyakumar, V., Li, G., Mohebi, H.: Constraint qualifications for convex optimization without convexity of constraints: new connections and applications to best approximation. Eur. J. Oper. Res. 265(1), 19–25 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to anonymous referees for helpful suggestions and valuable comments for the paper. This research was supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0026/2555) and the Thailand Research Fund, Grant No. RSA6080077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabian Wangkeeree.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisarat, N., Wangkeeree, R. Characterizing the solution set of convex optimization problems without convexity of constraints. Optim Lett 14, 1127–1144 (2020). https://doi.org/10.1007/s11590-019-01397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-019-01397-x

Keywords

Navigation