The K-discretization and K-incident graphs for discretizable Distance Geometry


The Distance Geometry Problem (DGP) is the problem of determining whether a realization for a simple weighted undirected graph \(G=(V,E,d)\) in a given Euclidean space exists so that the distances between pairs of realized vertices u, \(v \in V\) correspond to the weights \(d_{uv}\), for each \(\{u,v\} \in E\). We focus on a special class of DGP instances, referred to as the Discretizable DGP (DDGP), and we introduce the K-discretization and the K-incident graphs for the DDGP class. The K-discretization graph is independent on the vertex order that can be assigned to V, and can be useful for discovering whether one of such orders actually exists so that the DDGP assumptions are satisfied. The use of a given vertex order allows the definition of another important graph, the K-incident graph, which is potentially useful for performing pre-processing analysis on the solution set of DDGP instances.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Alves, R., Lavor, C.: Geometric algebra to model uncertainties in the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebras 27, 439–452 (2017)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Gonçalves, D., Mucherino, A.: Optimal partial discretization orders for discretizable distance geometry. Int. Trans. Oper. Res. 23, 947–967 (2016)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Gonçalves, D., Mucherino, A., Lavor, C., Liberti, L.: Recent advances on the interval distance geometry problem. J. Global Optim. 69, 525–545 (2017)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Lavor, C., Lee, J., Lee-St.John, A., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optim. Lett. 6, 783–796 (2012)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Lavor, C., Liberti, L., Mucherino, A.: The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances. J. Global Optim. 56, 855–871 (2013)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Liberti, L., Lavor, C., Maculan, N.: A Branch-and-Prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56, 3–69 (2014)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2011)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Liberti, L., Masson, B., Lee, J., Lavor, C., Mucherino, A.: On the number of realizations of certain Henneberg graphs arising in protein conformation. Discrete Appl. Math. 165, 213–232 (2014)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. 6, 1671–1686 (2012)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Mucherino, A., Lavor, C., Liberti, L.: Exploiting symmetry properties of the discretizable molecular distance geometry problem. J. Bioinform. Comput. Biol. 10(3), 1242009(1–15) (2012)

    Article  Google Scholar 

  13. 13.

    Saxe J (1979) Embeddability of weighted graphs in \(k\)-space is strongly NP-hard. In: Proceedings of 17th Allerton conference in communications, control and computing, pp 480–489

Download references


We wish to thank the anonymous referees for the very fruitful comments. We are also grateful to the Brazilian research agencies FAPESP and CNPq for financial support.

Author information



Corresponding author

Correspondence to Antonio Mucherino.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abud, G., Alencar, J., Lavor, C. et al. The K-discretization and K-incident graphs for discretizable Distance Geometry. Optim Lett 14, 469–482 (2020).

Download citation


  • Distance geometry
  • Vertex orders
  • Discretization
  • Combinatorial optimization