Skip to main content

A branch-and-cut algorithm for the Steiner tree problem with delays

Abstract

In this paper, we investigate the Steiner tree problem with delays, which is a generalized version of the Steiner tree problem applied to multicast routing. For this challenging combinatorial optimization problem, we present an enhanced directed cut-based MIP formulation and an exact solution method based on a branch-and-cut approach. Our computational study reveals that the proposed approach can optimally solve hard dense instances.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Achterberg T., Koch T., Martin A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2

    Althaus, E., Polzin, T., Daneshmand, S.V.: Improving linear programming approaches for the Steiner tree problem. In: Experimental and efficient algorithms. Lecture Notes in Computer Science, vol. 2647, pp. 1–14. Springer, Berlin (2003)

  3. 3

    Aneja Y.P.: An integer linear programming approach to the Steiner problem in graphs. Networks 10(2), 167–178 (1980)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4

    Applegate, D., Bixby, R., Cook W.: Finding cuts in the tsp (a preliminary report) (1995)

  5. 5

    Ascheuer N., Fischetti M., Grötschel M.: Solving the asymmetric travelling salesman problem with time windows by branch-and-cut. Math. Program. 90(3, Ser. A), 475–506 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6

    Ascheuer N., Fischetti M., Grötschel M.: A polyhedral study of the asymmetric traveling salesman problem with time windows. Networks 36(2), 69–79 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7

    Costa A.M., Cordeau J.-F., Laporte G.: Fast heuristics for the Steiner tree problem with revenues, budget and hop constraints. Eur. J. Oper. Res. 190(1), 68–78 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8

    Costa A.M., Cordeau J.F., Laporte G.: Models and branch-and-cut algorithms for the Steiner tree problem with revenues, budget and hop constraints. Networks 53(2), 141–159 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9

    Du, D.Z., Lu, B., Ngo, H., Pardalos, P.M.: Steiner tree problems. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, vol. 5, pp. 227–290 (2001)

  10. 10

    Ghaboosi N., Haghighat A.T.: Tabu search based algorithms for bandwidth-delay-constrained least-cost multicast routing. Telecommun. Syst. 34(3–4), 147–166 (2007)

    Article  Google Scholar 

  11. 11

    Ghanwani A.: Neural and delay based heuristics for the Steiner problem in networks. Eur. J. Oper. Res. 108(2), 241–265 (1998)

    MATH  Article  Google Scholar 

  12. 12

    Gouveia L.: Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning tree problem with Hop constraints. Comput. Oper. Res. 22(9), 959–970 (1995)

    MATH  Article  Google Scholar 

  13. 13

    Johnson E.L., Nemhauser G.L., Savelsbergh M.W.P.: Progress in linear programming-based algorithms for integer programming: an exposition. INFORMS J. Comput. 12, 2–23 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14

    Koch T., Martin A.: Solving Steiner tree problems in graphs to optimality. Networks 32(3), 207–232 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15

    Koch, T., Martin, A., Voβ, S.: SteinLib. http://elib.zib.de/steinlib

  16. 16

    Kompella V.P., Pasquale J., Polyzos G.C.: Multicast routing for multimedia communication. IEEE/ACM Trans. Netw. 1(3), 286–292 (1993)

    Article  Google Scholar 

  17. 17

    Kun Z., Heng W., Liu F.Y.: Distributed multicast routing for delay and delay variation-bounded Steiner tree using simulated annealing. Comput. Commun. 28(11), 1356–1370 (2005)

    Article  Google Scholar 

  18. 18

    Leggieri, V., Haouari, M., Layeb, S., Triki, C. The Steiner tree problem with delays: a compact formulation and reduction procedures. Discret. Appl. Math. (2011, in press)

  19. 19

    Miller C.E., Tucker A.W., Zemlin R.A.: Integer programming formulation of traveling salesman problems. J. Assoc. Comput. Mach. 7(4), 326–329 (1960)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20

    Nemhauser G.L., Wolsey L.A.: Integer and combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York (1988)

    Google Scholar 

  21. 21

    Oliveira C.A.S., Pardalos P.M.: A survey of combinatorial optimization problems in multicast routing. Comput. Oper. Res. 32(8), 1953–1981 (2005)

    MATH  Article  Google Scholar 

  22. 22

    Oliveira C.A.S., Pardalos P.M.: Construction algorithms and approximation bounds for the streaming cache placement problem in multicast networks. Cybern. Syst. Anal. 41(6), 898–908 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23

    Polzin T., Daneshmand S.V.: A comparison of Steiner tree relaxations. Discret. Appl. Math. J. Comb. Algorithms Inform. Comput. Sci. 112(1–3), 241–261 (2001)

    MathSciNet  MATH  Google Scholar 

  24. 24

    Santos M., Drummond L.M.A., Uchoa E.: A distributed dual ascent algorithm for the hop-constrained Steiner tree problem. Oper. Res. Lett. 38(1), 57–62 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25

    Sriram R., Manimaran G., Ram Murthy C.S.: Algorithms for delay-constrained low-cost multicast tree construction. Comput. Commun. 21(18), 1693–1706 (1998)

    Article  Google Scholar 

  26. 26

    Wolsey L.A.: Integer Programming. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Leggieri.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leggieri, V., Haouari, M. & Triki, C. A branch-and-cut algorithm for the Steiner tree problem with delays. Optim Lett 6, 1753–1771 (2012). https://doi.org/10.1007/s11590-011-0368-1

Download citation

Keywords

  • Steiner tree problem
  • Delay constraints
  • Branch-and-cut method