Skip to main content

Advertisement

Log in

A relaxation method for solving systems with infinitely many linear inequalities

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The problem of finding a feasible solution to a linear inequality system arises in numerous contexts. We consider solving linear semi-infinite inequality systems via an extension of the relaxation method for finite linear inequality systems. The difficulties are discussed and a convergence result is derived under fairly general assumptions on a large class of linear semi-infinite inequality systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S.: The relaxation method for linear inequalities. Can. J. Math. 6, 382–392 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antunes de Oliveira A., Rojas-Medar M.A.: Proper efficiency in vector infinite programming problems. Optim. Lett. 3(3), 319–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartle R.G.: The Elements of Real Analysis. Wiley, New York (1964)

    Google Scholar 

  4. Betro B.: An accelerated central cutting plane algorithm for linear semi-infinite programming. Math. Program., Ser. A 101, 479–495 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Censor Y., Zenios S.: Parallel optimization: Theory, Algorithms, and Applications. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  6. Coope I.D., Watson G.A.: A projected Lagrangian algorithm for semi-infinite programming. Math. Program. 32, 337–356 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang S.-C., Wu S.-Y.: An inexact approach to solving linear semi-infinite programming problems. Optimization 28, 291–299 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fang S.-C., Wu S.-Y., Birbil S.I.: Solving variational inequalities defined on a domain with infinitely many linear constraints. Comput. Optim. Appl. 37(1), 67–81 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goberna M.A., González E., Martínez-Legaz J.E., Todorov M.I.: Motzkin decomposition of closed convex sets. J. Math. Anal. Appl. 364, 209–221 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goberna M.A., López M.A.: Linear semi-infinite optimization theory: an updated survey. Eur. J. Oper. Res. 143, 390–415 (2002)

    Article  MATH  Google Scholar 

  11. Goberna M.A., López M.A.: Linear Semi-Infinite Optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

  12. Goffin J-L., Lou Z.Q., Ye Y.: On the complexity of a column generation algorithm for convex or quasiconvex feasibility problems. In: Hanger, W.W., Hearn, D.W., Pardalos, P.M. (eds) Large scale optimization: state of the art, pp. 182–191. Kluwer, Boston (1994)

    Chapter  Google Scholar 

  13. Goffin J.-L., Lou Z.-Q., Ye Y.: Comlexity analysis of an interior cutting plane method for convex feasibility problems. SIAM J. Optim. 6, 638–652 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Herman G.T.: Image Reconstruction from Projections: The fundamentals of computerized Tomography. Academic Press, New York (1980)

    MATH  Google Scholar 

  15. Hettich R., Kortanek K.O.: Semi-infinite programming: theory, methods and applications. SIAM Rev. 35, 380–429 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, H.: A projection method for solving infinite systems of linear inequalities. Advances in Optimization and Approximation pp. 186–194. Kluwer, Dordrecht (1994)

  17. Jeroslow R.G.: Some relaxation methods for linear inequalities. Cahiers du Cero 21, 43–53 (1979)

    MathSciNet  MATH  Google Scholar 

  18. Lin C.-J., Yang E.K., Fang S.-C.: Implementation of an inexact approach to solving linear semi-infinite programming problems. J. Comput. Appl. Math. 61, 87–103 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Maugeri A., Raciti F.: On general infinite dimensional complementarity problems. Optim. Lett. 2(1), 71–90 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Motzkin T.S., Shoenberg I.J.: The relaxation method for linear inequalities. Reprinted from Can. J. Math. 6, 393–404 (1954)

    Article  MATH  Google Scholar 

  21. Özçam B., Cheng H.: A discretization based smoothing method for solving semi-infinite variational inequalities. J. Ind. Manag. Optim. 1, 219–233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pardalos, P.M., Resende, M. (eds): Handbook of Applied Optimization. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  23. Richter M.K., Wong K.-C.: Infinite inequality systems and cardinal revelations. Econom. Theory 26, 947–971 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Watson, G.A.: Numerical Experiments with Globally Convergent Methods for Semi-Infinite Programming Problems. Lecture notes in Economics and Mathematical Systems vol. 215, pp. 193–205. Springer, Berlin (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Todorov.

Additional information

Research partially supported by CONACyT of Mexico, Grant 55681.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Gutiérrez, E., Todorov, M.I. A relaxation method for solving systems with infinitely many linear inequalities. Optim Lett 6, 291–298 (2012). https://doi.org/10.1007/s11590-010-0244-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-010-0244-4

Keywords

Navigation