Skip to main content
Log in

Invariant solutions of the supersymmetric version of a two-phase fluid flow system

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

A supersymmetric extension of a two-phase fluid flow system is formulated. A superalgebra of Lie symmetries of the supersymmetric extension of this system is computed. The classification of the one-dimensional subalgebras of this superalgebra into 63 equivalence classes is performed. For some of the subalgebras, it is found that the invariants have a non-standard structure. For six selected subalgebras, the symmetry reduction method is used to find invariants, orbits of the subgroups and reduced systems. Through the solutions of the reduced systems, the most general solutions are expressed in terms of arbitrary functions of one or two fermionic and one bosonic variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. Interscience, New York (1962)

    MATH  Google Scholar 

  2. Mises, R.: Mathematical Theory of Compressible Fluid Flow. Academic Press, New York (1958)

    MATH  Google Scholar 

  3. Lighthill, H.: Hyperbolic Equations and Waves. Springer, New York (1968)

    Google Scholar 

  4. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  5. Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  6. Jeffrey, A.: Quasilinear Hyperbolic Systems and Waves. Pitman, San Francisco (1976)

    MATH  Google Scholar 

  7. Rozdestvenskii, B., Janenko, N.: Systems of Quasilinear Equations and Their Applications to Gas Dynamics. Translation Math. Monographs, vol. 55. AMS, Providence, RI (1983)

  8. Godunov, S.K.: Mathematical Physics Equations. Nauka, Moscow (1979). (in Russian)

    Google Scholar 

  9. Jackiw, R.: A Particle Theorist’s Lectures on Supersymmetric Non-abelian Fluid Mechanics and d-Branes. Springer, New York (2002)

    Google Scholar 

  10. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York (1984)

    Book  MATH  Google Scholar 

  11. Peradzynski, Z.: Advances in nonlinear waves. In: Debnath, L. (ed.) Research Notes in Math, vol. 111. Pitman, Boston (1985)

    Google Scholar 

  12. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  13. Zakharov, V.: Nonlinear Waves and Weak Turbulence. Advances of Modern Mathematics Translation, Series 2. AMS, Providence (1997)

    Google Scholar 

  14. Riemann, B.: Versuch Einer Allgemeinen Auffassung der Integration und Differentiation. Teubner, Leipzig, (1876); ibid. Dover, New York (1953), pp. 331–344

  15. Riemann, B.: Über die Fortpflanzung Ebener Luftwellen von Endlicher Schwingungsweite. Teubner, Leipzig, (1876); ibid. Dover, New York (1953), pp. 145–164

  16. Poisson, S.D.: Mémoire sur la théorie du son. Journal de l’École Polytechnique, \(14^{\text{i}\acute{\text{ e }}\text{ me }}\) cahier, 7, Paris, pp. 319–392 (1808)

  17. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Interscience, New York (1948)

    MATH  Google Scholar 

  18. Hugoniot, H.: J. Ec. Polytech. (Paris) 1, 57–79 (1887)

    Google Scholar 

  19. Opanasenko, S., Bihlo, A., Popovych, R.O., Sergeyev, A.: Generalized symmetries, conservation laws and Hamiltonian structures of an isothermal no-slip drift flux model. Phys. D 411, 132546 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Opanasenko, S., Bihlo, A., Popovych, R.O., Sergeyev, A.: Extended symmetry analysis of isothermal no-slip drift flux model. Phys. D 402, 132188 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Panov, A.V.: Invariant solutions and submodels in two-phase fluid mechanics generated by 3-dimensional subalgebras. Barochronous flows. Int. J. Non-Linear Mech. 116, 140–146 (2019)

    Article  Google Scholar 

  22. John, F.: Nonlinear wave equations, formation of singularities, university lecture series 2. AMS, Providence (1990)

    Google Scholar 

  23. John, F.: Formulation of singularities in one-dimensional nonlinear wave propagation. Commun. Pure Appl. Math. 27, 377–394 (1974)

    Article  MATH  Google Scholar 

  24. Cornwell, J.F.: Group Theory in Physics, vol. 3. Academic Press, London (1989)

    MATH  Google Scholar 

  25. DeWitt, B.: Supermanifolds. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  26. Rogers, A.: A global theory of supermanifolds. J. Math. Phys. 21, 1352–1365 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rogers, A.: Supermanifolds: Theory and Applications. World Scientific, London (2007)

    Book  MATH  Google Scholar 

  28. Manin, Y.I., Radul, A.O.: A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy. Commun. Math. Phys. 98, 65 (1985)

  29. Fatyga, B.W., Kostelecky, V.A., Truax, D.R.: Grassmann-valued fluid dynamics. J. Math. Phys. 30, 1464–1472 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Grundland, A.M., Hariton, A.J.: Supersymmetric version of the Euler system and its invariant solutions. Symmetry 5, 253–270 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Grundland, A.M., Hariton, A.J.: Supersymmetric formulation of polytropic gas dynamics and its invariant solutions. J. Math. Phys. 52, 043501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Grundland, A.M., Hariton, A.J.: Supersymmetric version of a hydrodynamic system in Riemann invariants and its solutions. J. Math. Phys. 49, 043502 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grundland, A.M., Hariton, A.J.: Supersymmetric version of a Gaussian irrotational compressible fluid flow. J. Phys. A Math. Theor. 40, 15113–15129 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Freed, D.S.: Five Lectures on Supersymmetry. AMS, Providence (1999)

    MATH  Google Scholar 

  35. Varadarajan, V.S.: Reflections on Quanta. Symmetries and Supersymmetries. Springer, New York (2011)

    Book  MATH  Google Scholar 

  36. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  MATH  Google Scholar 

  37. Sidorov, A.F., Shapeev, V., Janenko, N.: Method of Differential Constraints Applied to Gas Dynamics. Nauka, Moscow (1984). (in Russian)

    Google Scholar 

  38. Winternitz, P.: Lie groups and solutions of nonlinear partial differential equations. In: Ibort, L.A., Rodriguez, M.A. (eds.) Integrable Systems, Quantum Groups and Quantum Field Theories, p. 429. Kluwer, Dordrecht (1993)

    Chapter  MATH  Google Scholar 

  39. Goursat, E.: Sur les substitutions orthogonales et les divisions régulières de l’espace. Ann. Sci. Ec. Norm. Sup. 6(3), 9–102 (1880)

    MATH  Google Scholar 

  40. Clarkson, P.A., Winternitz, P.: Symmetry reduction and exact solutions of nonlinear partial differential equations. In: Conte, R. (ed.) The Painlevé Property, One Century Later, p. 597. Springer, New York (1999)

    Google Scholar 

Download references

Acknowledgements

Both authors thank the Mathematical Physics Laboratory of the Centre de Recherches Mathématiques, Université de Montréal for its support during the writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Grundland.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by a research grant from NSERC of Canada.

Appendix

Appendix

The following list constitutes the classification of the one-dimensional subalgebras of the Lie symmetry superalgebra associated with the supersymmetric system (21), (22) and (23) into conjugacy classes under the action of the associated Lie group. Here \(\varepsilon =\pm 1\), the parameters a and b are non-zero bosonic constants, and \({\underline{\mu }}\) and \({\underline{\nu }}\) are non-zero fermionic constants.

$$\begin{aligned} \begin{aligned}&{{\mathcal {L}}}_1=\{P_1\}, \quad {{\mathcal {L}}}_2=\{P_2\}, \quad {{\mathcal {L}}}_3=\{P_1+aP_2\}, \quad {\mathcal L}_4=\{{\underline{\mu }}Q_1\}, \\&{\mathcal L}_5=\{P_1+{\underline{\mu }}Q_1\}, \quad {{\mathcal {L}}}_6=\{P_2+{\underline{\mu }}Q_1\}, \quad {\mathcal L}_7=\{P_1+aP_2+{\underline{\mu }}Q_1\}, \\&{{\mathcal {L}}}_8=\{{\underline{\mu }}Q_2\}, \quad {\mathcal L}_9=\{P_1+{\underline{\mu }}Q_2\}, \quad {\mathcal L}_{10}=\{P_2+{\underline{\mu }}Q_2\}, \\&{{\mathcal {L}}}_{11}=\{P_1+aP_2+{\underline{\mu }}Q_2\}, \quad {\mathcal L}_{12}=\{{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \quad {{\mathcal {L}}}_{13}=\{P_1+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \\&{{\mathcal {L}}}_{14}=\{P_2+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \quad {\mathcal L}_{15}=\{P_1+aP_2+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \quad {{\mathcal {L}}}_{16}=\{M_1\}, \\&{{\mathcal {L}}}_{17}=\{M_1+\varepsilon P_1\}, \quad {\mathcal L}_{18}=\{M_1+\varepsilon P_2\}, \quad {{\mathcal {L}}}_{19}=\{M_1+\varepsilon P_1+aP_2\}, \\&{{\mathcal {L}}}_{20}=\{M_1+{\underline{\mu }}Q_1\}, \quad {{\mathcal {L}}}_{21}=\{M_1+\varepsilon P_1+{\underline{\mu }}Q_1\}, \quad {{\mathcal {L}}}_{22}=\{M_1+\varepsilon P_2+{\underline{\mu }}Q_1\}, \\&{{\mathcal {L}}}_{23}=\{M_1+\varepsilon P_1+aP_2+{\underline{\mu }}Q_1\}, \quad {{\mathcal {L}}}_{24}=\{M_1+{\underline{\mu }}Q_2\}, \\&{{\mathcal {L}}}_{25}=\{M_1+\varepsilon P_1+{\underline{\mu }}Q_2\}, \quad {{\mathcal {L}}}_{26}=\{M_1+\varepsilon P_2+{\underline{\mu }}Q_2\},\\&{{\mathcal {L}}}_{27}=\{M_1+\varepsilon P_1+aP_2+{\underline{\mu }}Q_2\}, \quad {{\mathcal {L}}}_{28}=\{M_1+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \\&{{\mathcal {L}}}_{29}=\{M_1+\varepsilon P_1+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \quad {\mathcal L}_{30}=\{M_1+\varepsilon P_2+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \\&{{\mathcal {L}}}_{31}=\{M_1+\varepsilon P_1+aP_2+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \quad {\mathcal L}_{32}=\{M_2\}, \quad {{\mathcal {L}}}_{33}=\{M_2+\varepsilon P_1\}, \\&{{\mathcal {L}}}_{34}=\{M_2+\varepsilon P_2\}, \quad {\mathcal L}_{35}=\{M_2+\varepsilon P_1+aP_2\}, \quad {\mathcal L}_{36}=\{M_2+{\underline{\mu }}Q_1\}, \\&{{\mathcal {L}}}_{37}=\{M_2+\varepsilon P_1+{\underline{\mu }}Q_1\}, \quad {{\mathcal {L}}}_{38}=\{M_2+\varepsilon P_2+{\underline{\mu }}Q_1\},\\&{{\mathcal {L}}}_{39}=\{M_2+\varepsilon P_1+aP_2+{\underline{\mu }}Q_1\}, \quad {{\mathcal {L}}}_{40}=\{M_2+{\underline{\mu }}Q_2\}, \\&{{\mathcal {L}}}_{41}=\{M_2+\varepsilon P_1+{\underline{\mu }}Q_2\}, \quad {{\mathcal {L}}}_{42}=\{M_2+\varepsilon P_2+{\underline{\mu }}Q_2\},\\&{{\mathcal {L}}}_{43}=\{M_2+\varepsilon P_1+aP_2+{\underline{\mu }}Q_2\}, \quad {{\mathcal {L}}}_{44}=\{M_2+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \\&{{\mathcal {L}}}_{45}=\{M_2+\varepsilon P_1+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \quad {\mathcal L}_{46}=\{M_2+\varepsilon P_2+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \\&{{\mathcal {L}}}_{47}=\{M_2+\varepsilon P_1+aP_2+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \quad {\mathcal L}_{48}=\{M_2+aM_1\}, \\&{{\mathcal {L}}}_{49}=\{M_2+aM_1+\varepsilon P_1\}, \quad {{\mathcal {L}}}_{50}=\{M_2+aM_1+\varepsilon P_2\}, \\&{{\mathcal {L}}}_{51}=\{M_2+aM_1+\varepsilon P_1+bP_2\}, \quad {{\mathcal {L}}}_{52}=\{M_2+aM_1+{\underline{\mu }}Q_1\}, \\&{{\mathcal {L}}}_{53}=\{M_2+aM_1+\varepsilon P_1+{\underline{\mu }}Q_1\}, \quad {{\mathcal {L}}}_{54}=\{M_2+aM_1+\varepsilon P_2+{\underline{\mu }}Q_1\},\\&{{\mathcal {L}}}_{55}=\{M_2+aM_1+\varepsilon P_1+bP_2+{\underline{\mu }}Q_1\}, \quad {\mathcal L}_{56}=\{M_2+aM_1+{\underline{\mu }}Q_2\}, \\&{{\mathcal {L}}}_{57}=\{M_2+aM_1+\varepsilon P_1+{\underline{\mu }}Q_2\}, \quad {{\mathcal {L}}}_{58}=\{M_2+aM_1+\varepsilon P_2+{\underline{\mu }}Q_2\},\\&{{\mathcal {L}}}_{59}=\{M_2+aM_1+\varepsilon P_1+bP_2+{\underline{\mu }}Q_2\}, \quad {\mathcal L}_{60}=\{M_2+aM_1+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \\&{{\mathcal {L}}}_{61}=\{M_2+aM_1+\varepsilon P_1+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \\&{{\mathcal {L}}}_{62}=\{M_2+aM_1+\varepsilon P_2+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\}, \\&{{\mathcal {L}}}_{63}=\{M_2+aM_1+\varepsilon P_1+bP_2+{\underline{\mu }}Q_1+{\underline{\nu }}Q_2\} \end{aligned} \end{aligned}$$
(65)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grundland, A.M., Hariton, A.J. Invariant solutions of the supersymmetric version of a two-phase fluid flow system. Ricerche mat 71, 757–775 (2022). https://doi.org/10.1007/s11587-021-00569-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-021-00569-1

Keywords

Mathematics Subject Classification

Navigation