Skip to main content
Log in

Some new results on integration for multifunction

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

It has been proven in Di Piazza and Musiał (Set Valued Anal 13:167–179, 2005, Vector measures, integration and related topics, Birkhauser Verlag, Basel, vol 201, pp 171–182, 2010) that each Henstock–Kurzweil–Pettis integrable multifunction with weakly compact values can be represented as a sum of one of its selections and a Pettis integrable multifunction. We prove here that if the initial multifunction is also Bochner measurable and has absolutely continuous variational measure of its integral, then it is a sum of a strongly measurable selection and of a variationally Henstock integrable multifunction that is also Birkhoff integrable (Theorem 3.4). Moreover, in case of strongly measurable (multi)functions, a characterization of the Birkhoff integrability is given using a kind of Birkhoff strong property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff, G.: Integration of functions with values in a Banach space. Trans. Am. Math. Soc. 38, 357–378 (1935)

    MathSciNet  MATH  Google Scholar 

  2. Boccuto, A., Sambucini, A.R.: A note on comparison between Birkhoff and McShane-type integrals for multifunctions. Real Anal. Exch. 37(2), 315–324 (2012)

    Article  MathSciNet  Google Scholar 

  3. Boccuto, A., Minotti, A.M., Sambucini, A.R.: Set-valued Kurzweil–Henstock integral in Riesz space setting. PanAmerican Math. J. 23(1), 57–74 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Boccuto, A., Candeloro, D., Sambucini, A.R.: Henstock multivalued integrability in Banach lattices with respect to pointwise non atomic measures. Atti Accad Naz. Lincei Rend. Lincei Mat. Appl. 26(4), 363–383 (2015). https://doi.org/10.4171/RLM/710

    Article  MathSciNet  MATH  Google Scholar 

  5. Bongiorno, B., Di Piazza, L., Musiał, K.: Approximation of Banach space valued non-absolutely integrable functions by step functions. Glasg. Math. J. 50, 583–593 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bongiorno, B., Di Piazza, L., Musiał, K.: A variational Henstock integral characterization of the Radon–Nikodym Property. Ill. J. Math. 53(1), 87–99 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Candeloro, D., Sambucini, A.R.: Order-type Henstock and Mc Shane integrals in Banach lattices setting. In: Sisy 20014- IEEE 12th International Symposium on Intelligent Systems and Informatics, Subotica—Serbia; 09/2014 (2014). https://doi.org/10.1109/SISY.2014.6923557

  8. Candeloro, D., Sambucini, A.R.: Comparison between some norm and order gauge integrals in Banach lattices. PanAmerican Math. J. 25(3), 1–16 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Candeloro, D., Croitoru, A., Gavrilut, A., Sambucini, A.R.: An extension of the Birkhoff integrability for multifunctions. Mediter. J. Math. 13(5), 2551–2575 (2016). https://doi.org/10.1007/s00009-015-0639-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Candeloro, D., Di Piazza, L., Musial, K., Sambucini, A.R.: Gauge integrals and selections of weakly compact valued multifunctions. J. Math. Anal. Appl. 441(1), 293–308 (2016). https://doi.org/10.1016/j.jmaa.2016.04.009

    Article  MathSciNet  MATH  Google Scholar 

  11. Candeloro, D., Di Piazza, L., Musial, K., Sambucini, A.R.: Relations among gauge and Pettis integrals for multifunctions with weakly compact convex values. Ann. Mat. 197(1), 171–183 (2018). https://doi.org/10.1007/s10231-017-0674-z

    Article  MathSciNet  MATH  Google Scholar 

  12. Caponetti, D., Marraffa, V., Naralenkov, K.: On the integration of Riemann-measurable vector-valued functions. Monatsh. Math. 182(3), 513–586 (2017). https://doi.org/10.1007/s00605-016-0923-z

    Article  MathSciNet  MATH  Google Scholar 

  13. Cascales, B., Rodríguez, J.: Birkhoff integral for multi-valued functions. J. Math. Anal. Appl. 297(2), 540–560 (2004)

    Article  MathSciNet  Google Scholar 

  14. Cascales, B., Rodríguez, J.: The Birkhoff integral and the property of Bourgain. Math. Ann. 331(2), 259–279 (2005)

    Article  MathSciNet  Google Scholar 

  15. Cascales, C., Kadets, V., Rodríguez, J.: The Pettis integral for multi-valued functions via single-valued ones. J. Math. Anal. Appl. 332(1), 1–10 (2007)

    Article  MathSciNet  Google Scholar 

  16. Cascales, C., Kadets, V., Rodríguez, J.: Measurable selectors and set-valued Pettis integral in non-separable Banach spaces. J. Funct. Anal. 256, 673–699 (2009)

    Article  MathSciNet  Google Scholar 

  17. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)

    Book  Google Scholar 

  18. Di Piazza, L.: Variational measures in the theory of the integration in \(R^m\). Czechoslov. Math. J. 51(1), 95–110 (2001)

    Article  Google Scholar 

  19. Di Piazza, L., Musiał, K.: A characterization of variationally McShane integrable banach-space valued functions. Ill. J. Math. 45(1), 279–289 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Di Piazza, L., Musiał, K.: Set-valued Henstock–Kurzweil–Pettis integral. Set Valued Anal. 13, 167–179 (2005)

    Article  MathSciNet  Google Scholar 

  21. Di Piazza, L., Musiał, K.: A decomposition of Denjoy-Khintchine-Pettis and Henstock–Kurzweil–Pettis integrable multifunctions. In: Curbera, G.P., Mockenhaupt, G., Ricker, W.J. (eds.) Vector Measures, Integration and Related Topics, Operator Theory: Advances and Applications, vol. 201, pp. 171–182. Birkhauser Verlag, Basel (2010)

    Google Scholar 

  22. Di Piazza, L., Musiał, K.: Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values. Monatsh. Math. 173(4), 459–470 (2014)

    Article  MathSciNet  Google Scholar 

  23. Di Piazza, L., Porcello, G.: Radon–Nikodym theorems for finitely additive multimeasures. Z. Anal. ihre. Anwend. (ZAA) 34(4), 373–389 (2015). https://doi.org/10.4171/ZAA/1545

    Article  MathSciNet  MATH  Google Scholar 

  24. Fremlin, D.H.: The Henstock and McShane integrals of vector-valued functions. Ill. J. Math. 38(3), 471–479 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Fremlin, D.H., Mendoza, J.: On the integration of vector-valued functions. Ill. J. Math. 38, 127–147 (1994)

    MathSciNet  MATH  Google Scholar 

  26. Gámez, J.L., Mendoza, J.: On Denjoy–Dunford and Denjoy–Pettis integrals. Stud. Math. 130(2), 115–133 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Gordon, R.A.: The Integrals of Lebesgue, Denjoy, Perron and Henstock. Graduate Studies in Mathematics, vol. 4. AMS, Providence (1994)

    Google Scholar 

  28. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis I and II, Mathematics and Its Applications, vol. 419. Kluwer Academic Publisher, Dordrecht (1997)

    Google Scholar 

  29. Labuschagne, C.C.A., Marraffa, V.: Operator martingale decompositions and the Radon–Nikodym property in Banach spaces. J. Math. Anal. Appl. 363(2), 357–365 (2010). https://doi.org/10.1016/j.jmaa.2009.08.054

    Article  MathSciNet  MATH  Google Scholar 

  30. Labuschagne, C.C.A., Pinchuck, A.L., van Alten, C.J.: A vector lattice version of Rådström’s embedding theorem. Quaest. Math. 30(3), 285–308 (2007)

    Article  MathSciNet  Google Scholar 

  31. Marraffa, V.: The Birkhoff integral and the Bourgain property in a locally convex space. Real Anal. Exch. 32(2), 1–19 (2006/2007)

  32. Musiał, K.: Topics in the theory of Pettis integration. Rend. Istit. Mat. Univ. Trieste 23, 177–262 (1991)

    MathSciNet  MATH  Google Scholar 

  33. Musiał, K.: Pettis integral. In: Handbook of Measure Theory I, North-Holland, Amsterdam, pp. 531–586 (2002)

  34. Musiał, K.: Pettis integrability of multifunctions with values in arbitrary Banach spaces. J. Convex Anal. 18(3), 769–810 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Musiał, K.: Approximation of Pettis integrable multifunctions with values in arbitrary Banach spaces. J. Convex Anal. 20(3), 833–870 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Naralenkov, K.M.: A Lusin type measurability property for vector-valued functions. J. Math. Anal. Appl. 417(1), 293–307 (2014). https://doi.org/10.1016/j.jmaa.2014.03.029

    Article  MathSciNet  MATH  Google Scholar 

  37. Pettis, B.J.: On integration in vector spaces. Trans. Am. Math. Soc. 44(2), 277–304 (1938)

    Article  MathSciNet  Google Scholar 

  38. Porcello, G.: Multimeasures and integration of multifunctions in Banach spaces. In: Dottorato di Ricerca in Matematica e Informatica XXIV ciclo, University of Palermo (Italy).https://iris.unipa.it/retrieve/handle/10447/91026/99048/TesiDottoratoGiovanniPorcello.pdf (2014)

  39. Potyrala, M.: The Birkhoff and Variationally McShane integrals of vector valued functions. Folia Math. Acta Univ. Lodz. 13(1), 31–39 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Potyrala, M.: Some remarks about Birkhoff and Riemann–Lebesgue integrability of vector valued functions. Tatra Mt. Math. Publ. 35, 97–106 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Di Piazza.

Additional information

Communicated by P. De Lucia.

Dedicated to Prof. Hans Weber on the occasion of his 70th birthday with deep esteem.

This research was supported by the Grant Prot. No. U2015/001379 of GNAMPA—INDAM (Italy); by University of Perugia—Dept. of Mathematics and Computer Sciences—Grant No. 2010.011.0403 and by University of Palermo (Italy).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candeloro, D., Di Piazza, L., Musiał, K. et al. Some new results on integration for multifunction. Ricerche mat 67, 361–372 (2018). https://doi.org/10.1007/s11587-018-0376-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-018-0376-x

Keywords

Mathematics Subject Classification

Navigation