Skip to main content
Log in

On very short and intense laser–plasma interactions

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We briefly report on some results regarding the impact of very short and intense laser pulses on a cold, low-density plasma initially at rest, and the consequent acceleration of plasma electrons to relativistic energies. Locally and for short times the pulse can be described by a transverse plane electromagnetic travelling-wave and the motion of the electrons by a purely Magneto-Fluido-Dynamical model with a very simple dependence on the transverse electromagnetic potential, while the ions can be regarded as at rest; the Lorentz–Maxwell and continuity equations are reduced to the Hamilton equations of a Hamiltonian system with 1 degree of freedom, in the case of a plasma with constant initial density, or a collection of such systems otherwise. We can thus describe both the well-known wakefield behind the pulse and the recently predicted slingshot effect, i.e. the backward expulsion of high energy electrons just after the laser pulse has hit the surface of the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. \(T _{{\scriptscriptstyle H}}\) grows with the oscillation amplitude \(\zeta \), but goes to the nonrelativistic period \(T _{{\scriptscriptstyle H}}^{{\scriptscriptstyle nr}} = \sqrt{\pi m/n_0e^2}\) as \(\zeta \rightarrow 0\).

  2. With the initial conditions (6) and a non-vanishing v as considered here the invertibility of the map \(\mathbf{X}\mapsto \mathbf{x}_e(t,\mathbf{X})\) breaks also in an intermediate Z-range (\(Z_{{\scriptscriptstyle M}}\le Z \le Z_{{\scriptscriptstyle M}}'\)) for \(t \gtrsim T _{{\scriptscriptstyle H}}\).

References

  1. Fiore, G., Fedele, R., de Angelis, U.: The slingshot effect: a possible new laser-driven high energy acceleration mechanism for electrons. Phys. Plasm 21, 113105 (2014)

    Article  Google Scholar 

  2. Fiore, G., De Nicola, S.: A simple model of the slingshot effect. arXiv:1509.04656

  3. Woodward, P.M.: A method of calculating the field over a plane aperture required to produce a given polar diagram. J. Inst. Electr. Eng. 93, 1554 (1947)

    Google Scholar 

  4. Lawson, J.D.: Lasers and accelerators. IEEE Trans. Nucl. Sci. NS 26, 4217 (1979)

    Article  Google Scholar 

  5. Palmer, R.B.: Laser-driven grating LINAC. Particle Accelerators, vol. 11, pp. 81–90. Gordon and Breach Science Publishers, Inc., USA (1980)

  6. Esarey, E., Sprangle, P., Krall, J.: Laser acceleration of electrons in vacuum. Phys. Rev. E 52, 5443 (1995)

    Article  Google Scholar 

  7. Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979)

    Article  Google Scholar 

  8. Mangles, S.P., et al.: Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535 (2004)

    Article  Google Scholar 

  9. Geddes, C.G.R., et al.: High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538 (2004)

    Article  Google Scholar 

  10. Faure, J., et al.: A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541 (2004)

    Article  Google Scholar 

  11. Wang, X., et al.: Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun. 4 article nr.: 1988 (2013)

  12. Fiore, G.: A plane-wave model of the impact of short laser pulses on diluted plasmas. in preparation

  13. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  14. Fiore, G., Maio, A., Renno, P.: On the initial-value problem in a cold plasma model. Ric. Mat. 63(Suppl. 1), 157–164 (2014)

  15. Fiore, G.: Travelling waves and a fruitful ‘time’ reparametrization in relativistic electrodynamics. in preparation

  16. Fiore, G.: On plane-wave relativistic electrodynamics in plasmas and in vacuum. J. Phys. A Math. Theor. 47, 225501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fiore, G.: On plane waves in diluted relativistic cold plasmas. Acta Appl. Math. 132, 261–271 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dawson, J.D.: Nonlinear electron oscillations in a cold plasma. Phys. Rev. 113, 383 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fiore, G.: A “slingshot” laser-driven acceleration mechanism of plasma electrons. Nucl. Instr. Meth. Phys. Res. A doi:10.1016/j.nima.2016.02.085

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Fiore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiore, G. On very short and intense laser–plasma interactions. Ricerche mat 65, 491–503 (2016). https://doi.org/10.1007/s11587-016-0270-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0270-3

Keywords

Mathematics Subject Classification

Navigation