Skip to main content
Log in

Maxwell equations in complex form of Majorana–Oppenheimer, solutions with cylindric symmetry in Riemann S 3 and Lobachevsky H 3 spaces

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

Complex formalism of Riemann–Silberstein–Majorana–Oppenheimer in Maxwell electrodynamics is extended to the case of arbitrary pseudo-Riemannian space-time in accordance with the tetrad recipe of Tetrode–Weyl–Fock–Ivanenko. In this approach, the Maxwell equations are solved exactly on the background of static cosmological Einstein model, parameterized by special cylindrical coordinates and realized as a Riemann space of constant positive curvature. A discrete frequency spectrum for electromagnetic modes depending on the curvature radius of space and three parameters is found, and corresponding basis electromagnetic solutions have been constructed explicitly. In the case of elliptical model a part of the constructed solutions should be rejected by continuity considerations. Similar treatment is given for the Maxwell equations in hyperbolic Lobachevsky model, the complete basis of electromagnetic solutions in corresponding cylindrical coordinates has been constructed as well, no quantization of frequencies of electromagnetic modes arises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bateman H.: The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell’s Equations. Cambridge University Press, Cambridge (1915)

    Google Scholar 

  2. Bialynicki-Birula I.: On the wave function of the photon. Acta Phys. Polon 86, 97–116 (1994)

    Google Scholar 

  3. Bialynicki-Birula I.: Photon wave function. Prog. Opt. 36, 248–294 (1996)

    Google Scholar 

  4. Bogush A.A., Krylov G.G., Ovsiyuk E.M., Red’kov V.M.: Maxwell electrodynamics in complex form, solutions with cylindric symmetry in Riemann space of constant positive curvature. Doklady of the National Academy of Sciences of Belarus 53, 52–58 (2009)

    Google Scholar 

  5. Dvoeglazov V.: Historical note on relativistic theories of electromagnetism. Apeiron 5, 69–88 (1998)

    Google Scholar 

  6. Einstein A.: Zur elektrodynamik der bewegten Körper. Ann. Phys. 17, 891–921 (1905)

    Article  Google Scholar 

  7. Esposito S.: Covariant Majorana formulation of electrodynamics. Found. Phys. 28, 231–244 (1998) arXiv:hep-th/9704144

    Article  MathSciNet  Google Scholar 

  8. Fedorov F.I.: The Lorentz group. Science, Moscow (1979)

    MATH  Google Scholar 

  9. Gersten A.: Maxwell equations as the one-photon quantum equation. Found. Phys. 12, 291–298 (1998) arXiv:quant-ph/9911049

    MathSciNet  Google Scholar 

  10. Ivezić T.: Lorentz invariant Majorana formulation of the field equations and Dirac-like equation for the free photon. Electron. J. Theor. Phys. 3, 131–142 (2006)

    MATH  Google Scholar 

  11. Kisel, V.V., Ovsiyuk, E.M., Red’kov, V.M., Tokarevskaya, H.G.: Maxwell equations in matrix form, squaring procedure, separating the variables and structure of electromagnetic solutions. Nonlinear Dynamics and Applications. Vol. 16, Proceedings of XVI Annual Seminar NPCS-2009, May 19–22, Minsk, Belarus (in press, 2009). http://arxiv.org/abs/0906.1434

  12. Lorentz H.: Proceedings of electromagnetic phenomena in a system moving with any velocity less than that of light royal acad. Amsterdam 6, 809–831 (1904)

    Google Scholar 

  13. Majorana E.: Scientific Papers. (Unpublished). Deposited at the “Domus Galileana”. Pisa, quaderno 2, p. 101/1; 3, p. 11, 160; 15, p. 16; 17, p. 83, 159.

  14. Marcolongo R.: Les transformations de Lorentz et les équations de l’électrodynamique. Annales de la Faculté des Sciences de Toulouse. Sér. 3. 4, 429–468 (1912)

    MathSciNet  Google Scholar 

  15. Minkowski, H. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse. 53–111 (1908); Math. Ann. 68, 472–525 (1910)

  16. Olevsky M.N.: Three-orthogonal systems in spaces of constant curvature in which equation Δ2 U + λU = 0 permits the full separation of variables. Matemat. Sbornik 27, 379–426 (1950)

    Google Scholar 

  17. Oppenheimer J.: Note on light quanta and the electromagnetic field. Phys. Rev. 38, 725–746 (1931)

    Article  MATH  Google Scholar 

  18. Penrose, R., Rindler, W.: Spinors and space-time. Volume I: Two-spinor calculus and relativistic fields. Cambridge University Press (1984)

  19. Poincaré H.: Sur la dynamique de l’électron. C. R. Acad. Sci. Paris 140, 1504–1508 (1905)

    MATH  Google Scholar 

  20. Poincaré H.: Sur la dynamique de l’électron. Rendiconti del Circolo Matematico di Palermo. 21, 129–175 (1906)

    Article  MATH  Google Scholar 

  21. Red’kov V.M.: Fields in Riemannian Space and Lorentz Group. Belarussian Science, Minsk (2009)

    Google Scholar 

  22. Red’kov V.M.: On solutions of Schrödinger and Dirac equations in Einstein stationary space-time spherical and elliptical models. Nonlinear Phenom. Complex Syst. 10, 312–334 (2007)

    MathSciNet  Google Scholar 

  23. Red’kov, V.M., Bogush, A.A., Tokarevskaya, N.G., George, J. Spix. Majorana-Oppengeimer approach to Maxwell electrodynamics in Riemannian space-time. In: Kuvshinov, V.I., Krylov, G.G. (eds) Proceedings of 14th International School & Conference “Foundation & Advances in Nonlinear Science”, Minsk, September 22–25, pp. 20–49 (2008). http://arxiv.org/abs/0905.0261

  24. Schrödinger E.: Space-time structure. Cambridge University Press, Cambridge (1950)

    MATH  Google Scholar 

  25. Silberstein L.: Elektromagnetische grundgleichungen in bivectorieller behandlung. Ann. Phys. 22, 579–586 (1907)

    Article  Google Scholar 

  26. Sipe J.: Photon wave functions. Phys. Rev. A 52, 1875–1883 (1995)

    Article  Google Scholar 

  27. Varlamov V.: About algebraic foundations of Majorana – Oppenheimer quantum electrodynamics and de Broglie–Jordan neutrino theory of light. Ann. Fond. L. de Broglie 27, 273–286 (2003)

    MathSciNet  Google Scholar 

  28. Weber, H.: Die partiellen Differential-Gleichungen der mathematischen Physik nach Riemann’s Vorlesungen. Friedrich Vieweg und Sohn. Braunschweig. 348 (1901)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Red’kov.

Additional information

Communicated by Editor in Chief.

A. A. Bogush: deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogush, A.A., Krylov, G.G., Ovsiyuk, E.M. et al. Maxwell equations in complex form of Majorana–Oppenheimer, solutions with cylindric symmetry in Riemann S 3 and Lobachevsky H 3 spaces. Ricerche mat. 59, 59–96 (2010). https://doi.org/10.1007/s11587-009-0067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-009-0067-8

Keywords

Mathematics Subject Classification (2000)

Navigation