Skip to main content
Log in

Silver nanoparticle–incorporated over-oxidized poly(3,4-ethylenedioxythiophene)-based electrochemical sensor for selective determination of riboflavin

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This study presents the development of a selective sensor for the electrochemical determination of riboflavin. In the first step, electropolymerization of 3,4-ethylenedioxythiophene (EDOT) was carried out on the pencil graphite electrode to prepare the modified electrode (PEDOT/PGE). In the second step, we prepared over-oxidized poly(3,4-ethylene-dioxythiophene) pencil graphite electrode (OOPEDOT/PGE) by chronoamperometry method in pH 7.0 phosphate buffer solution. In the final step, silver nanoparticles were deposited on the OOPEDOT/PGE by chronoamperometry. The sensitivity of the developed AgNp/OOPEDOT/PGE sensor to riboflavin has been improved. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the sensor. The surface morphology of the sensor was examined using field emission scanning electron microscopy (FESEM). The limit of detection (LOD) value was determined to be 0.51 µmol L−1 and a linear range of 0.8 and 80 µmol L−1 using differential pulse voltammetry (DPV). The sensor demonstrated excellent resistance to interference from dopamine (DA), glucose (G), uric acid (UA), and lactate (LA). The study investigated the applicability of the constructed sensor to real samples and achieved good recovery values. The results indicate that the modified electrode is suitable for riboflavin determination applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Bandžuchová L, Šelešovská R, Navrátil T et al (2012) Voltammetric monitoring of electrochemical reduction of riboflavin using silver solid amalgam electrodes. Electrochim Acta 75:316–324. https://doi.org/10.1016/j.electacta.2012.05.009

    Article  CAS  Google Scholar 

  2. Zarei E, Jamali MR, Bagheri J (2018) Electrochemical determination of riboflavin by an ionic liquid modified carbon paste electrode as a sensitive sensor. Anal Bioanal Electrochem 10:642–657

  3. Derakhshan M, Shamspur T, Molaakbari E et al (2020) Fabrication of a novel electrochemical sensor for determination of riboflavin in different drink real samples. Russ J Electrochem 56:181–188. https://doi.org/10.1134/S1023193520030039

    Article  CAS  Google Scholar 

  4. Nemomsa T, Kitte SA, Woldemariam ET, Fereja TH (2020) Indirect electrochemical determination of riboflavin (Vb2) using 1, 4-benzaquinone modified carbon paste electrode. Acta Chem Iasi 28:1–18. https://doi.org/10.2478/achi-2020-0001

    Article  CAS  Google Scholar 

  5. Kodentsova VM, Uspenskaia ID, Vrzhesinskaia OA, Kharitonchik LA, Sokol’nikov AA, Iakushina LM, Makarova IB, Spirichev VB (1995) Features of B group vitamin metabolism and criteria for providing them to children suffering from celiac disease. Vopr Med Khimii 41(4):41–45

    CAS  PubMed  Google Scholar 

  6. Brezo T, Stojanović Z, Suturović Z et al (2015) Simple, rapid and selective chronopotentiometric method for the determination of riboflavin in pharmaceutical preparations using a glassy carbon electrode. Acta Chim Slov 62:923–931. https://doi.org/10.17344/acsi.2015.1745

    Article  CAS  PubMed  Google Scholar 

  7. Marzabad MA, Jafari B, Norouzi P (2020) Determination of riboflavin by nanocomposite modified carbon paste electrode in biological fluids using fast fourier transform square wave voltammetry. Int J Eng Trans C: Asp 33:1696–1702. https://doi.org/10.5829/ije.2020.33.09c.01

    Article  CAS  Google Scholar 

  8. Wang M, Zhao L, Liu M, Lin JM (2007) Determination of riboflavin by enhancing the chemiluminescence intensity of peroxomonosulfate-cobalt(II) system. Spectrochim Acta A Mol Biomol Spectrosc 66:1222–1227. https://doi.org/10.1016/j.saa.2006.06.010

    Article  CAS  PubMed  Google Scholar 

  9. Hu L, Yang X, Wang C et al (2007) Determination of riboflavin in urine and beverages by capillary electrophoresis with in-column optical fiber laser-induced fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 856:245–251. https://doi.org/10.1016/j.jchromb.2007.06.011

    Article  CAS  PubMed  Google Scholar 

  10. Kang L, Lin C, Ning F et al (2021) Rapid determination of folic acid and riboflavin in urine by polypyrrole magnetic solid-phase extractant combined ultra-performance liquid chromatography. J Chromatogr A 1648:462192. https://doi.org/10.1016/j.chroma.2021.462192

  11. Dokur E, Gorduk O, Sahin Y (2020) Selective electrochemical sensing of riboflavin based on functionalized multi-walled carbon nanotube/gold nanoparticle/pencil graphite electrode. ECS J Solid State Sci Technol 9:121003. https://doi.org/10.1149/2162-8777/abcdff

    Article  CAS  Google Scholar 

  12. Sá ÉS, Da Silva PS, Jost CL, Spinelli A (2015) Electrochemical sensor based on bismuth-film electrode for voltammetric studies on vitamin B2 (riboflavin). Sens Actuators B Chem 209:423–430. https://doi.org/10.1016/j.snb.2014.11.136

    Article  CAS  Google Scholar 

  13. Blanco E, Dominguez CSH, Hernández P et al (2009) Alkanethiols modified gold electrodes for selective detection of molecules with different polarity and molecular size. Application to vitamin B2 analysis. Electroanalysis 21:495–500. https://doi.org/10.1002/elan.200804430

    Article  CAS  Google Scholar 

  14. Yu YY, Wang JX, Si RW et al (2017) Sensitive amperometric detection of riboflavin with a whole-cell electrochemical sensor. Anal Chim Acta 985:148–154. https://doi.org/10.1016/j.aca.2017.06.053

    Article  CAS  PubMed  Google Scholar 

  15. Kotkar RM, Desai PB, Srivastava AK (2007) Behavior of riboflavin on plain carbon paste and aza macrocycles based chemically modified electrodes. Sens Actuators B Chem 124:90–98. https://doi.org/10.1016/j.snb.2006.12.004

    Article  CAS  Google Scholar 

  16. Zhang H, Zhao J, Liu H et al (2010) Application of poly (3-methylthiophene) modified glassy carbon electrode as riboflavin sensor. Int J Electrochem Sci 5:295–301. https://doi.org/10.1016/S1452-3981(23)15285-0

  17. Uruc S, Gorduk O, Sahin Y (2023) Electroanalytical determination of Allura Red in beverage samples using an anodically pretreated graphite electrode. Int J Environ Anal Chem 103:3544–3562. https://doi.org/10.1080/03067319.2021.1910252

    Article  CAS  Google Scholar 

  18. Nagarajan S, Vairamuthu R (2021) Electrochemical detection of riboflavin using tin-chitosan modified pencil graphite electrode. J Electroanal Chem 891:115235. https://doi.org/10.1016/j.jelechem.2021.115235

  19. Sedhu N, Jagadeesh Kumar J, Sivaguru P, Raj V (2023) Electrochemical detection of riboflavin in pharmaceutical and food samples using in situ electropolymerized glycine coated pencil graphite electrode. J Electroanal Chem 928:117037. https://doi.org/10.1016/j.jelechem.2022.117037

  20. Sreelekshmi, Sajeevan B, MG G et al (2023) An electrochemical sensor based on a pencil graphite electrode modified with poly-riboflavin for 4-nitrophenol quantification. Mater Chem Phys 301:127568. https://doi.org/10.1016/j.matchemphys.2023.127568

  21. Gorcay H, Turkoglu G, Sahin Y, Berber H (2014) Electrochemical determination of paracetamol by a novel derivative of formazan modified pencil graphite electrode. IEEE Sens J 14:2529–2536. https://doi.org/10.1109/JSEN.2014.2311296

    Article  CAS  Google Scholar 

  22. Prinith NS, Manjunatha JG, Tigari G et al (2021) Mechanistic Insights into the voltammetric determination of riboflavin at poly (serine) modified graphite and carbon nanotube composite paste electrode. ChemistrySelect 6:10746–10757. https://doi.org/10.1002/slct.202103184

    Article  CAS  Google Scholar 

  23. Koyun O, Sahin Y (2018) Voltammetric determination of nitrite with gold nanoparticles/poly(methylene blue)-modified pencil graphite electrode: application in food and water samples. Ionics (Kiel) 24:3187–3197. https://doi.org/10.1007/s11581-017-2429-7

    Article  CAS  Google Scholar 

  24. Koyun O (2017) Electrochemical determination of some substances important for food safety. Dissertation, Yildiz Technical University

  25. Tigari G, Manjunatha JG, Raril C, Hareesha N (2019) Determination of riboflavin at carbon nanotube paste electrodes modified with an anionic surfactant. ChemistrySelect 4:2168–2173. https://doi.org/10.1002/slct.201803191

    Article  CAS  Google Scholar 

  26. Muthusankar G, Rajkumar C, Chen SM et al (2019) Sonochemical driven simple preparation of nitrogen-doped carbon quantum dots/SnO2 nanocomposite: a novel electrocatalyst for sensitive voltammetric determination of riboflavin. Sens Actuators B Chem 281:602–612. https://doi.org/10.1016/j.snb.2018.10.145

    Article  CAS  Google Scholar 

  27. Roushani M, Abdi Z (2014) Novel electrochemical sensor based on graphene quantum dots/riboflavin nanocomposite for the detection of persulfate. Sens Actuators B Chem 201:503–510. https://doi.org/10.1016/j.snb.2014.05.054

    Article  CAS  Google Scholar 

  28. Gorduk O (2020) Differential pulse voltammetric determination of serotonin using an acid-activated multiwalled carbon nanotube–over-oxidized poly(3,4-ethylenedioxythiophene) modified pencil graphite electrode. Anal Lett 53:1034–1052. https://doi.org/10.1080/00032719.2019.1693583

    Article  CAS  Google Scholar 

  29. Hu X, Zheng W, Zhang R (2016) Determination of p-chloronitrobenzene by voltammetry with an electrochemically pretreated glassy carbon electrode. J Solid State Electrochem 20:3323–3330. https://doi.org/10.1007/s10008-016-3302-8

    Article  CAS  Google Scholar 

  30. Tahtaisleyen S, Gorduk O, Sahin Y (2020) Electrochemical determination of sunset yellow using an electrochemically prepared graphene oxide modified–pencil graphite electrode (EGO-PGE). Anal Lett 0:1–23. https://doi.org/10.1080/00032719.2020.1767120

    Article  CAS  Google Scholar 

  31. Gorduk O, Gorduk S, Sahin Y (2020) Fabrication of tetra-substituted copper(II) phthalocyanine-graphene modified pencil graphite electrode for amperometric detection of hydrogen peroxide. ECS J Solid State Sci Technol 9:061003. https://doi.org/10.1149/2162-8777/ab9c7a

    Article  CAS  Google Scholar 

  32. Dokur E, Uruc S, Gorduk O, Sahin Y (2022) Ultrasensitive electrochemical detection of carcinoembryonic antigen with a label-free immunosensor using gold nanoparticle-decorated poly(pyrrole-co-3,4-ethylenedioxythiophene). ChemElectroChem 9:e202200121. https://doi.org/10.1002/celc.202200121

  33. Han Y, Shen M, Wu Y et al (2013) Preparation and electrochemical performances of PEDOT/sulfonic acid-functionalized graphene composite hydrogel. Synth Met 172:21–27. https://doi.org/10.1016/j.synthmet.2013.04.001

    Article  CAS  Google Scholar 

  34. Xie Y, Zhang SH, Jiang HY et al (2019) Properties of carbon black-PEDOT composite prepared via in-situ chemical oxidative polymerization. E-Polymers 19:61–69. https://doi.org/10.1515/epoly-2019-0008

    Article  CAS  Google Scholar 

  35. Takcı DK, Ozdenefe MS, Genc S (2023) Green synthesis of silver nanoparticles with an antibacterial activity using Salvia officinalis aqueous extract. J Cryst Growth 614:127239. https://doi.org/10.1016/j.jcrysgro.2023.127239

  36. Dokur E, Uruc S, Kurteli R et al (2023) Designing disposable hand-made screen-printed electrode using conductive ink for electrochemical determination of dopamine. Ionics (Kiel) 29:5465–5480. https://doi.org/10.1007/s11581-023-05239-w

    Article  Google Scholar 

  37. Ignat EC, Lutic D, Ababei G, Carja G (2022) Novel heterostructures of noble plasmonic metals/Ga-substituted hydrotalcite for solar light driven photocatalysis toward water purification. Catalysts 12:1351. https://doi.org/10.3390/catal12111351

  38. Qie L, Chen W, Xiong X, et al (2015) Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv Sci 2:1500195. https://doi.org/10.1002/advs.201500195

  39. Tahtaisleyen S, Gorduk O, Sahin Y (2020) Electrochemical determination of tartrazine using a graphene/poly(L-phenylalanine) modified pencil graphite electrode. Anal Lett 53:1683–1703. https://doi.org/10.1080/00032719.2020.1716242

    Article  Google Scholar 

  40. Dokur E, Uruc S, Gorduk O, Sahin Y (2023) A novel approach for ultrasensitive amperometric determination of NADH via graphene-based electrode obtained by electrochemical intercalation of tetraalkylammonium ions. Ionics (Kiel) 29:2005–2019. https://doi.org/10.1007/s11581-023-04948-6

    Article  CAS  Google Scholar 

  41. Malinauskas A (2008) Electrochemical study of riboflavin adsorbed on a graphite electrode. Chemija 19:1–3

  42. D’Souza ES, Manjunatha JG, Raril C et al (2020) Polymer modified carbon paste electrode as a sensitive sensor for the electrochemical determination of riboflavin and its application in pharmaceutical and biological samples. Anal bioanal chem res 7:461-472.

  43. Sharma A, Khosla A, Arya S (2020) Synthesis of SnO2 nanowires as a reusable and flexible electrode for electrochemical detection of riboflavin. Microchem J 156:104858. https://doi.org/10.1016/j.microc.2020.104858

  44. Nezamzadeh-Ejhieh A, Pouladsaz P (2014) Voltammetric determination of riboflavin based on electrocatalytic oxidation at zeolite-modified carbon paste electrodes. J Ind Eng Chem 20:2146–2152. https://doi.org/10.1016/j.jiec.2013.09.044

    Article  CAS  Google Scholar 

  45. Gribat LC, Babauta JT, Beyenal H, Wall NA (2017) New rotating disk hematite film electrode for riboflavin detection. J Electroanal Chem 798:42–50. https://doi.org/10.1016/j.jelechem.2017.05.008

    Article  CAS  Google Scholar 

  46. Huang DQ, Wu H, Song C et al (2018) The determination of riboflavin (vitamin B2) using manganese dioxide modified glassy carbon electrode by differential pulse voltammetry. Int J Electrochem Sci 13:8303–8312. https://doi.org/10.20964/2018.09.02

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors have nothing to report.

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization is performed by O.G. and Y.S. All authors contributed to the study’s writing review and editing. Experiments, data collection, and analysis were performed by M.Y.A., S.U., E.D., and O.G. The first draft of the manuscript was written by M.Y.A., S.U., E.D., O.G., and Y.S. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yucel Sahin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 646 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acikalin, M.Y., Dokur, E., Uruc, S. et al. Silver nanoparticle–incorporated over-oxidized poly(3,4-ethylenedioxythiophene)-based electrochemical sensor for selective determination of riboflavin. Ionics (2024). https://doi.org/10.1007/s11581-024-05583-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05583-5

Keywords

Navigation