Skip to main content
Log in

Chemical spray deposited SnO2:MoO3 composite thin films for visible light photocatalytic dye degradation application

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this work, tin oxide (SnO2), molybdenum trioxide (MoO3) and SnO2: MoO3 composite thin films were prepared using the chemical spray pyrolysis technique. X-ray diffraction (XRD) studies indicate the formation of a tetragonal phase for SnO2, an orthorhombic phase for MoO3 and a blend phase of SnO2 and MoO3 composites. The prepared SnO2, MoO3 and SnO2: MoO3 composite thin films possess a crystallite size ranging from 29.42 to 27.04 nm. Fourier transform infrared spectroscopy (FTIR) studies reveal the presence of basic vibrational modes of Sn–O and Mo–O. X-ray photoelectron spectroscopy (XPS) analysis declares that tin and molybdenum ions exist in the Sn4+ and Mo6+ electronic states, respectively. Field emission-scanning electron microscopy (FESEM) investigation demonstrates enhanced SnO2, MoO3, and the SnO2:MoO3 composite morphology. Energy dispersive X-ray spectroscopy (EDX) studies were employed to perform elemental composition analysis of Sn, Mo and O in the composite thin films. The average transmittance varies between 35 and 80% in the wavelength range of 300—1100 nm. The prepared films revealed a red shift of the absorption edge and a remarkable improvement in visible light absorption at a wavelength region of 400 to 500 nm. For visible light photocatalytic performance, the band edge potential calculation for SnO2 (3.35 eV), MoO3 (2.21 eV) and SnO2: MoO3 (3.25 eV) composite thin films was performed, which shows the presence of a defect energy level. A photoluminescence (PL) study reveals the electron–hole pair recombination and oxygen vacancy defects. The SnO2: MoO3 composite thin films exhibit a better photocatalytic efficiency of 92% for methylene blue dye (MB) using visible light illumination. The obtained results indicate that composite photocatalyst is a promising material (i.e., band edge potential, reduced electron pair recombination, vacancy defects) to remove organic contaminants from wastewater in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

“Not applicable”.

References

  1. Zhenga L, Chena C, Zheng Y, Zhan Y, Cao Y, Lin X, Zhenga Q, Wei K, Zhu J (2014) Photocatalytic activity of ZnO/Sn1-xZnxO2-xnanocatalysts: A synergistic effect of doping and heterojunction. Appl Catal B: Environ 148–149:44–50. https://doi.org/10.1016/j.apcatb.2013.10.042

    Article  CAS  Google Scholar 

  2. Hunge YM, Yadav AA, Kang S-W (2022) Photocatalytic degradation of eriochrome black-T Using BaWO4/MoS2 Composite. Catalysts 12:1290. https://doi.org/10.3390/catal12101290

    Article  CAS  Google Scholar 

  3. Kiran T, Parveez Ahmed HM, Begum NS, Kannan K, Radhika D (2020) Structural, Morphological and Optical Studies of Sol-Gel Engineered Sm3+ Activated ZnO Thin Films for Photocatalytic Applications. Phys Chem Solid State 21:433–439. https://doi.org/10.15330/pcss.21.3.433-439

    Article  CAS  Google Scholar 

  4. Hunge YM, Yadav AA, Kang S-W, Mohite BM (2023) Role of nanotechnology in photocatalysis application. Recent Pat Nanotechnol 17. https://doi.org/10.2174/1872210516666220304162429

  5. Sa-nguanprang S, Phuruangrat A, Kannan K, Thongtem S, Thongtem T (2020) Tartaric acid-assisted precipitation of visible light-driven Ce-doped ZnO nanoparticles used for photodegradation of methylene blue. J Aust Ceram Soc 56:1029–1041. https://doi.org/10.1007/s41779-019-00447-y

    Article  CAS  Google Scholar 

  6. Sinha T, Md. Ahmaruzzaman, Adhikari PP, Bora R (2017) Green and environmentally sustainable fabrication of Ag-SnO2 nanocomposite and its multifunctional efficacy as photocatalyst, antibacterial and antioxidant agent. ACS Sustain Chem Eng 5:4645–4655. https://doi.org/10.1021/acssuschemeng.6b03114

  7. Karthik R, Muthezhilan R, Jaffar Hussain A, Ramalingam K, Rekha V (2015) Effective removal of Methylene Blue dye from water using three different low-cost adsorbents. Desalin Water Treat 57:10626–10631. https://doi.org/10.1080/19443994.2015.1039598

    Article  CAS  Google Scholar 

  8. Nagasundari SM, Muthu K, Kaviyarasu K, Al Farraj DA (2021) Current trends of silver doped zinc oxide nanowires photocatalytic degradation for energy and environmental application. Surf Interfaces 23:100931. https://doi.org/10.1016/j.surfin.2021.100931

    Article  CAS  Google Scholar 

  9. Vinothkannan M, Karthikeyan C, Gnana Kumar G, Kim AR, Yoo DJ (2015) One-pot green synthesis of reduced grapohene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochim Acta A Mol Biomol Spectrosc 136:256–264. https://doi.org/10.1016/j.saa.2014.09.031

    Article  CAS  PubMed  Google Scholar 

  10. Shin H-S, Kim Y-R, Han B, Makarov IE, Ponomarev AV, Pikaev AK (2002) Application of electron beam to treatment of wastewater from papermill. Radiat Phys Chem 65:539–547. https://doi.org/10.1016/S0969-806X(02)00348-1

    Article  CAS  Google Scholar 

  11. Nachimuthu S, Thangavel S, Kannan K, Selvakumar V, Muthusamy K, Siddiqui MR, Wabaidur SM, Parvathiraja C (2022) Lawsonia inermis mediated synthesis of ZnO/Fe2O3 nanorods for photocatalysis – biological treatment for the enhanced effluent treatment, antibacterial and antioxidant activities. Chem Phys Lett 804:139907. https://doi.org/10.1016/j.cplett.2022.139907

    Article  CAS  Google Scholar 

  12. Sarojini P, Leeladevi K, Kavitha T, Gurushankar K, Sriram G, Tae Hwan Oh, Kannan K (2023) Design of V2O5 blocks decorated with garlic peel biochar nanoparticles: a sustainable catalyst for the degradation of methyl orange and its antioxidant activity. Mater 16:5800. https://doi.org/10.3390/ma16175800

    Article  CAS  Google Scholar 

  13. Kumar M, Mehta A, Mishra A, Singh J, Rawat M, Basu S (2018) Biosynthesis of tin oxide nanoparticles using Psidium Guajava leave extract for photocatalytic dye degradation under sunlight. Mater Lett 215:121–124. https://doi.org/10.1016/j.matlet.2017.12.074

    Article  CAS  Google Scholar 

  14. Pawar M, TopcuSendogdular S, Gouma P (2018) A brief overview of TiO2 photocatalyst for organic dye remediation: case study of reaction mechanisms involved in Ce-TiO2 Photocatalysts system. Nanomater 2018:13. https://doi.org/10.1155/2018/5953609

    Article  CAS  Google Scholar 

  15. Yadav AA, Hunge YM, Mathe VL, Kulkarni SB (2018) Photocatalytic degradation of salicylic acid using BaTiO3 photocatalyst under ultraviolet light illumination. J Mater Sci: Mater Electron 29:15069–15073. https://doi.org/10.1007/s10854-018-9646-3

    Article  CAS  Google Scholar 

  16. Jorquera MA, Valencia G, Eguchi M, Katayose M, Riquelme C (2002) Disinfection of seawater for hatchery aquaculture systems using electrolytic water treatment. Aquac 207:213–224. https://doi.org/10.1016/S0044-8486(01)00766-9

    Article  CAS  Google Scholar 

  17. An T-C, Zhu X-H, Xiong Y (2002) Feasibility study of photoelectrochemical degradation of methylene blue with three-dimensional electrode-photocatalytic reactor. Chemosphere. 46:897–903. https://doi.org/10.1016/S0045-6535(01)00157-6

    Article  CAS  PubMed  Google Scholar 

  18. Mehta A, Mishra A, Sharma M, Singh S, Basu S (2016) Effect of silica/titania ratio on enhanced photooxidation of industrial hazardous materials by microwave treated mesoporous SBA15/TiO2 nanocomposites. J Nanopart Res 18:209. https://doi.org/10.1007/s11051-016-3523-x

    Article  CAS  Google Scholar 

  19. Yadav AA, Hunge YM, Kang S-W, Fujishima A, Terashima C (2023) Enhanced Photocatalytic Degradation Activity Using the V2O5/RGO Composite. J Nanomater 13:338. https://doi.org/10.3390/nano13020338

    Article  CAS  Google Scholar 

  20. Hunge YM, Yadav AA, Kang S-W, Kim H (2022) Facile synthesis of multitasking composite of silver nanoparticle with Zinc oxide for 4-nitrophenol reduction, photocatalytic hydrogen production, and 4-chlorophenol degradation. J Alloys compd 928:167133. https://doi.org/10.1016/j.jallcom.2022.167133

    Article  CAS  Google Scholar 

  21. Bobirică C, Bobirică L, Râpă M, Matei E, Predescu AM, Orbeci C (2020) Photocatalytic degradation of ampicillin using PLA/TiO2 hybrid nanofibers coated on different types of fiberglass. Water 12:176. https://doi.org/10.3390/w12010176

    Article  CAS  Google Scholar 

  22. Kim J, Wong S, Kim G, Park Y-B, van Embden J, Gaspera ED (2020) Transparent electrodes based on spray coated fluorine-doped tin oxide with enhanced optical, electrical and mechanical properties. J Mater Chem C 8:14531–14539. https://doi.org/10.1039/D0TC03314F

    Article  CAS  Google Scholar 

  23. Shukla GP, Pandey CK, Bajpai M, Bhatnagar MC, Dhar R (2019) Ammonia gas sensor based on SnO2 nanostructure with the enhanced sensing capability at low temperatures. Phase Transit 92:939–947. https://doi.org/10.1080/01411594.2019.1660878

    Article  CAS  Google Scholar 

  24. Abdelkrim A, Rahmane S, Abdelouahab O, Hafida A, Nabila K (2016) Optoelectronic properties of SnO2 thin films sprayed at different deposition times. Chin Phys B 25:046801. https://doi.org/10.1088/1674-1056/25/4/046801

    Article  CAS  Google Scholar 

  25. Arfaoui A, Mhamdi A, Besrour N, Touihri S, Ouzari HI, Alrowaili ZA, Amlouk M (2018) Investigations into the physical properties of SnO2/MoO3 and SnO2/WO3 bi-layered structures along with photocatalytic and antibacterial applications. Thin Solid Films 648:12–20. https://doi.org/10.1016/j.tsf.2018.01.002

    Article  CAS  Google Scholar 

  26. Ansari SA, Khan MM, Ansari MO, Lee J, Cho MH (2014) Visible light-driven photocatalytic and photochemical studies of Ag-SnO2 nanocomposite synthesized using an electrochemically active biofilm. RSC Adv 4:26013–26021. https://doi.org/10.1039/C4RA03448A

    Article  CAS  Google Scholar 

  27. Zarei S, Hasheminiasari M, Masoudpanah SM, Javadpour J (2022) Photocatalytic properties of ZnO/SnO2 nanocomposite films: role of morphology. J Mater Res Technol 17:2305–2312. https://doi.org/10.1016/j.jmrt.2022.01.126

    Article  CAS  Google Scholar 

  28. Tamez Uddin Md, Enamul Hoque Md, Bhoumick MC (2020) Facile one-pot synthesis of heterostructure SnO2/ZnO photocatalyst for enhanced photocatalytic degradation of organic dye. RSC Adv 10:23554–23565. https://doi.org/10.1039/D0RA03233F

    Article  Google Scholar 

  29. Kim S, Chang H-K, Kim KB, Kim H-J, Lee H-N, Park TJ, Park YM (2021) Highly porous SnO2/TiO2 heterojunction thin-film photocatalyst using gas-flow thermal evaporation and atomic layer deposition. Catal 11:1144. https://doi.org/10.3390/catal11101144

    Article  CAS  Google Scholar 

  30. Maver K, Arcon I, Fanetti M, AlJitan S, Palmisano G, Valant M, Stangar UL (2022) Improved photocatalytic activity of SnO2-TiO2 nanocomposite thin films prepared by low-temperature sol-gel method. Catal Today 397–399:540–549. https://doi.org/10.1016/j.cattod.2021.06.018

    Article  CAS  Google Scholar 

  31. Kumar MR, Murugadoss G, Pirogov AN, Thangamuthu R (2018) A facile one step synthesis of SnO2/CuO and CuO/SnO2 nanocomposites: photocatalytic application. J Mater Sci: MaterElectron 29:13508–13515. https://doi.org/10.1007/s10854-018-9476-3

    Article  CAS  Google Scholar 

  32. Miao Y, Guanzhong Lu, Liu X, Guo Y, Wang Y, Yun GuO (2010) The molybdenum species of MoO3/SiO2 and their catalytic activities for the epoxidation of propylene with cumene hydroperoxide. J Ind Eng Chem 16:45–50. https://doi.org/10.1016/j.jiec.2010.01.023

    Article  CAS  Google Scholar 

  33. Koh HL, Lee SH, Kim KL (2000) The effect of MoO3 addition toV2O5/Al2O3 catalysts for the selective catalytic reduction of NO by NH3. React Kinet Catal Lett 71:239–244. https://doi.org/10.1023/A:1010362723450

    Article  CAS  Google Scholar 

  34. Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A (2012) Transition metal oxides for organic electronics: energetics, device physics and applications. Adv Mater 24:5408–5427. https://doi.org/10.1002/adma.201201630

    Article  CAS  PubMed  Google Scholar 

  35. Cobianu C, Savaniu C, Siciliano P, Capone S, Utriainen M, Niinisto L (2001) SnO2 sol-gel derived thin films for integrated gas sensors. Sens Actuators B: Chem 77:496–502. https://doi.org/10.1016/S0925-4005(01)00755-9

    Article  CAS  Google Scholar 

  36. Rella R, Siciliano P, Capone S, Epifani M, Vasanelli L, Licciulli A (1999) Air quality monitoring by means of sol-gel integrated tin oxide thin films. Sens Actuators B: Chem 58:283–288. https://doi.org/10.1016/S0925-4005(99)00090-8

    Article  CAS  Google Scholar 

  37. Blandenet G, Court M, Lagarde Y (1981) Thin layers deposited by the pyrosolprocess. Thin Solid Films 77:81–90. https://doi.org/10.1016/0040-6090(81)90362-x

    Article  CAS  Google Scholar 

  38. Hossain MF, Shah MAH, Islam MA, Hossain MS (2021) Transparent conducting SnO2 thin films synthesized by nebulized spray pyrolysis technique: Impact of Sb doping on the different physical properties. Mater Sci Semicond. 121:105346. https://doi.org/10.1016/j.mssp.2020.105346

    Article  CAS  Google Scholar 

  39. Larciprete R, Borsella E, De Padova P, Perfetti P, Faglia G, Sberveglieri G (1998) Organotin films deposited by laser-induced CVD as active layers in chemical gas sensors. Thin Solid Films 323:291–295. https://doi.org/10.1016/S0040-6090(97)01201-7

    Article  CAS  Google Scholar 

  40. Min S, Jeong J (2013) A study of a typical grain growth properties for SnO2 thin films. Mater Sci Semicond Process 16:1267–1270. https://doi.org/10.1016/j.mssp.2013.01.026

    Article  CAS  Google Scholar 

  41. Sberveglieri G, Faglia G, Groppelli S, Nelli P (1992) Methods for the preparation of NO, NO2 and H2 sensors based on tin oxide thin films, grown by means of the R.F. magnetron sputtering technique. Sens Actuators B: Chem 8:79–88. https://doi.org/10.1016/0925-4005(92)85012-L

    Article  CAS  Google Scholar 

  42. Nagasawa Y, Tabata K, Ohnishi H (1997) Sensitivity control of SnO2 by morphology of thin film. Appl Surf Sci 121(122):327–330. https://doi.org/10.1016/S0169-4332(97)00317-6

    Article  Google Scholar 

  43. Dolbec R, El Khakani MA, Serventi AM, Saint-Jacques RG (2003) Influence of the nanostructural characteristics on the gas sensing properties of pulsed laser deposited tin oxide thin films. Sens Actuators B: Chem 93:566–571. https://doi.org/10.1016/S0925-4005(03)00229-6

    Article  CAS  Google Scholar 

  44. Feng Gu, Wang SF, Lü MK, Cheng XF, Liu SW, Zhou GJ, Dong Xu, Yuan DR (2004) Luminescence of SnO2 thin films prepared by spin-coating method. J Cryst Growth 262:182–185. https://doi.org/10.1016/j.jcrysgro.2003.10.028

    Article  CAS  Google Scholar 

  45. Yan H, Chen GH, Man WK, Wong SP, Kwok RWM (1998) Characterizations of SnO2 thin films deposited on Si substrates. Thin Solid Films 326:88–91. https://doi.org/10.1016/S0040-6090(98)00530-6

    Article  CAS  Google Scholar 

  46. Monk PMS, Ali T, Partridge RD (1995) The effect of doping electrochromic molybdenum oxide with other metal oxides: Correlation of optical and kinetic properties. Solid State Ion 80:75–85. https://doi.org/10.1016/0167-2738(95)00130-X

    Article  CAS  Google Scholar 

  47. Lopez-Pinto N, Tom T, Bertomeu J, Asensi JM, Ros E, Ortega P, Voz C (2021) Deposition and characterization of sputtered molybdenum oxide thin films with hydrogen atmosphere. Appl Surf Sci 563:150285. https://doi.org/10.1016/j.apsusc.2021.150285

    Article  CAS  Google Scholar 

  48. Campos-Gonzalez E, Camps E, Morales-Luna M, Rivera-Rodriguez C, Basurto R (2020) Characterization of MoO3 thin films deposited by laser ablation. Mater Lett 277:128355. https://doi.org/10.1016/j.matlet.2020.128355

    Article  CAS  Google Scholar 

  49. Boukhachem A, Bouzidi C, Boughalmi R, Ouerteni R, Kahlaoui M, Ouni B, Elhouichet H, Amlouk M (2014) Physical investigations on MoO3 sprayed thin film for selective sensitivity applications. Ceram Int 40:13427–13435. https://doi.org/10.1016/j.ceramint.2014.05.062

    Article  CAS  Google Scholar 

  50. Bouzidi A, Benramdane N, Tabet-Derraz H, Mathieu C, Khelifa B, Desfeux R (2003) Effect of substrate temperature on the structural and optical properties of MoO3 thin films prepared by spray pyrolysis technique. Mater Sci Eng B 97:5–8. https://doi.org/10.1016/S0921-5107(02)00385-9

    Article  Google Scholar 

  51. Qiang Fu, Chen J, Shi C, Ma D (2013) Room-temperature sol-gel derived molybdenum oxide thin films for efficient and stable solution-processed organic light-emitting diodes. ACS Appl Mater Interfaces 5:6024–6029. https://doi.org/10.1021/am4007319

    Article  CAS  Google Scholar 

  52. Madhuri KV, Dixit D (2022) Study on structural and optical properties of thermally evaporated MoO3 thin films. Bull Mater Sci 45:83. https://doi.org/10.1007/s12034-022-02664-x

    Article  CAS  Google Scholar 

  53. Arjunan K, Ramesh Babu R (2023) Facile Homemade Spray Pyrolyzed (SnO2)1–x(CeO2)x Composite thin films for visible light photocatalysis application. Ionics 29:4797–4816. https://doi.org/10.1007/s11581-023-05160-2

    Article  CAS  Google Scholar 

  54. Kavitha S, Jayamani N, Barathi D (2021) Investigation onSnO2/TiO2 nanocomposites and their enhanced photocatalytic properties for the degradation of methylene blue under solar light irradiation. Bull Mater Sci 44:26. https://doi.org/10.1007/s12034-020-02291-4

    Article  CAS  Google Scholar 

  55. Kumar M, Rahman A (2023) Facile Synthesis, Characterization, and Photocatalytic study of La2O3/SnO2 Nanocomposites. J Inst Eng India Ser E 104:95–108. https://doi.org/10.1007/s40034-023-00267-7

    Article  CAS  Google Scholar 

  56. Mafa PJ, Swana US, Liu D, Gui J, Mamba BB, Kuvarega AT (2021) Synthesis of Bi5O7I-MoO3 photocatalyst via simultaneous calcination of BiOI and MoS2 for visible light degradation of ibuprofen. Colloids Surf A: Physicochem Eng 612:126004. https://doi.org/10.1016/j.colsurfa.2020.126004

    Article  CAS  Google Scholar 

  57. Daturi M, Appel LG (2002) Infrared Spectroscopic Studies of Surface Properties of Mo/SnO2 Catalyst. J Catal 209:427–432. https://doi.org/10.1006/jcat.2002.3641

    Article  CAS  Google Scholar 

  58. Patil SM, Dhodamani AG, Vanalakar SA, Deshmukh SP, Delekar SD (2018) Multi-applicative tetragonal TiO2/SnOnanocomposites for photocatalysis and gas sensing. J Phys Chem Solids 115:127–136. https://doi.org/10.1016/j.jpcs.2017.12.020

    Article  CAS  Google Scholar 

  59. Akkera HS, Vidhi Mann BN, Varalakshmi MP, Kambhala N, Venkatesh G (2023) Effect of Sr-doped on physical and photoluminescence properties of SnO2 transparent conducting oxide thin films. J Mater Sci: Mater Electron 34:1044. https://doi.org/10.1007/s10854-023-10473-z

    Article  CAS  Google Scholar 

  60. Arjunan K, Ramesh Babu R (2024) Fabrication of samarium doped SnO2 thin filmsusing facile spray pyrolysis technique for photocatalysis applications. Ionics 30:491–507. https://doi.org/10.1007/s11581-023-05256-9

    Article  CAS  Google Scholar 

  61. Huang J, Liu Y, Yuemei Wu, Li X (2017) Influence of Mn Doping on the Sensing Properties of SnO2 Nanobelt to Ethanol. Am J Anal Chem 8:60–71. https://doi.org/10.4236/ajac.2017.81005

    Article  CAS  Google Scholar 

  62. Nagasawa Y, Choso T, Karasuda T, Shimomura S, Ouyang F, Tabata K, Yamaguchi Y (1999) Photoemission study of the interaction of a reduced thin film SnO2 with oxygen. Surf Sci 433–435:226–230. https://doi.org/10.1016/S00396028(99)00044-8

    Article  Google Scholar 

  63. Sunu SS, Prabhu E, Jayaraman V, Gnanasekar KI, Seshagiri TK, Gnanasekaran T (2004) Electrical conductivity and gas sensing properties of MoO3. Sens Actuators B: Chem 101:161–174. https://doi.org/10.1016/j.snb.2004.02.048

    Article  CAS  Google Scholar 

  64. Alam U, Kumar S, Bahnemann D, Koch J, Tegenkamp C, Muneer M (2018) Harvesting visible light with MoO3 nanorods modified by Fe(III) nanoclusters for effective photocatalytic degradation of organic pollutants. Phys Chem Chem Phys 20:4538–4545. https://doi.org/10.1039/C7CP08206A

    Article  CAS  PubMed  Google Scholar 

  65. Xie F, Choy WCH, Wang C, Li X, Zhang S, Hou J (2013) Low-Temperature Solution-Processed Hydrogen Molybdenum and Vanadium Bronzes for an Efficient Hole-Transport Layer in Organic Electronics. Adv Mater 25:2051–2055. https://doi.org/10.1002/adma.201204425

    Article  CAS  PubMed  Google Scholar 

  66. Mario A, Bica de Moraes B, Trasferetti C, Rouxinol FP, Landers R, Durrant SF, Scarmínio J, Urbano A (2004) Molybdenum Oxide Thin Films Obtained by the Hot-Filament Metal Oxide Deposition Technique. Chem Mater 16(3):513–520. https://doi.org/10.1021/cm034551a

    Article  CAS  Google Scholar 

  67. Yadav AA, Pawar SC, Patil DH, Ghogare MD (2015) Properties of (200) oriented, highly conductive SnO2 thin films by chemical spray pyrolysis from non-aqueous medium: Effect of antimony doping. J Alloys Compd 652:145–152. https://doi.org/10.1016/j.jallcom.2015.08.197

    Article  CAS  Google Scholar 

  68. Chen S, Zhao X, Xie H, Liu J, Duan L, Ba X, Zhao J (2012) Photoluminescence of undoped and Ce-doped SnO2 thin films deposited by sol-gel-dip-coating method. Appl Surf Sci 258:3255–3259. https://doi.org/10.1016/j.apsusc.2011.11.077

    Article  CAS  Google Scholar 

  69. Hunge YM, Yadav AA, Kang S-W, Lim SJ, Kim H (2023) Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic and hydrogen production. J Photochem Photobiol A: Chem 434:114250. https://doi.org/10.1016/j.jphotochem.2022.114250

    Article  CAS  Google Scholar 

  70. Muhammed Shafi P, Chandra Bose A (2015) Impact of crystalline defects and size on X-ray line broadening: A phenomenological approach for tetragonal SnO2 nanocrystals. AIP Adv 5:057137. https://doi.org/10.1063/1.4921452

    Article  CAS  Google Scholar 

  71. Arjunan K, Ramesh Babu R (2023) Facile homemade spray pyrolyzed (SnO2)1–x(CeO2)x composite thin films for visible light photocatalysis application. Ionics 29:4797–4816. https://doi.org/10.1007/s11581-023-05160-24

    Article  CAS  Google Scholar 

  72. Hirami Y, Hunge YM, Suzuki N, Rodríguez-González V, Kondo T, Yuasa M, Fujishima A, Teshima K, Terashima C (2023) Enhanced degradation of ibuprofen using a combined treatment of plasma and Fentonreactions. J Colloid Interface Sci 642:829–836. https://doi.org/10.1016/j.jcis.2023.02.136

    Article  CAS  PubMed  Google Scholar 

  73. Hunge YM, Yadav AA, Mahadik MA, Bulakhe RN, Shim JJ, Mathe VL, Bhosae CH (2018) Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination. Optical Mater 76:260–270. https://doi.org/10.1016/j.optmat.2017.12.044

    Article  CAS  Google Scholar 

  74. Prakash K, Senthil Kumar P, Pandiaraj S, Saravanakumar K, Karuthapandian S (2016) Controllable synthesis of SnO2 photocatalyst with superior photocatalytic activity for the degradation of methylene blue dye solution. J Exp Nanosci 11:1138–1155. https://doi.org/10.1080/17458080.2016.1188222

    Article  CAS  Google Scholar 

  75. Keerthana SP, Yuvakkumar R, Ravi G, Manimegalai M, Pannipara M, Al-Sehemi AG, Gopal RA, Hanafiah MM, Velauthapillai D (2021) Investigation on (Zn) doping and anionic surfactant (SDS) effect on SnO2 nanostructures for enhanced photocatalytic RhB dye degradation. Environ Res. 199:111312. https://doi.org/10.1016/j.envres.2021.111312

    Article  CAS  PubMed  Google Scholar 

  76. Bhuvaneswari K, Pazhanivel T, Palanisamy G, Bharathi G (2020) CTAB-aided surface-modified tin oxide nanoparticles as an enhanced photocatalyst for water treatment. J Mater Sci: Mater Electron 31:6618–6628. https://doi.org/10.1007/s10854-020-03217-w

    Article  CAS  Google Scholar 

  77. Choudhury B, Choudhury A (2013) Room temperature ferromagnetism in defective TiO2 nanoparticles: Role of surface and grain boundary oxygen vacancies. J Appl Phys 114:203906. https://doi.org/10.1063/1.4833562

    Article  CAS  Google Scholar 

  78. Hunge YM, Uchida A, Tominaga Y, Fujii Y, Yadav AA, Kang S-W, Suzuki N, Shitanda I, Kondo T, Itagaki M, Yuasa M, Gosavi S, Fujishima A, Terashima C (2021) Visible Light-Assisted Photocatalysis Using Spherical-Shaped BiVO4 Photocatalyst. Catalysts 11:460. https://doi.org/10.3390/catal11040460

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors, KA and RR, would like to gratefully acknowledge the National Centre for Photovoltaic Research and Education (NCPRE) at IIT Bombay, funded by the Ministry of New and Renewable Energy, Government of India, for providing a major characterization facility for FESEM, XPS measurement. The author RR gratefully acknowledges MOE-RUSA 2.0 physical sciences for departmental financial support.

Funding

“Not applicable”.

Author information

Authors and Affiliations

Authors

Contributions

A. Conceptualization, methodology, software: K. Arjunan

B. Data Curation, Writing-Original draft preparation: K. Arjunan

C. Visualization, Investigation: K. Arjunan

D. Supervision: R. Ramesh Babu

E. Software, Validation: K. Arjunan

F. Writing-receiving and editing: K. Arjunan & R. Ramesh Babu

Corresponding author

Correspondence to R. Ramesh Babu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjunan, K., Ramesh Babu, R. Chemical spray deposited SnO2:MoO3 composite thin films for visible light photocatalytic dye degradation application. Ionics (2024). https://doi.org/10.1007/s11581-024-05563-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05563-9

Keywords

Navigation