Skip to main content
Log in

Fabrication of samarium doped SnO2 thin films using facile spray pyrolysis technique for photocatalysis application

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Samarium (Sm) doped SnO2 thin films were fabricated onto micro-glass slides using a facile spray pyrolysis technique. The influence of samarium doping concentration (0.25, 0.50, and 1.00 wt%) on the photocatalytic characteristics of SnO2 thin film is investigated using various characterization studies. X-ray diffraction (XRD) studies show that the tin oxide (SnO2) and Sm doped SnO2 thin films possess average crystallite size of 48, 46, 45, and 44 nm corresponding to the tetragonal rutile structure. Micro-Raman spectroscopy analysis confirms the tetragonal phase of SnO2 and Sm doped SnO2 films from the fundamental peaks at 476, 637 and 777 cm−1. X-ray photoelectron spectroscopy (XPS) studies reveal that tin and Sm ions exist in the Sm3+ and Sn4+ oxidation states, respectively. Field emission scanning electron microscopy (FESEM) studies demonstrate that various Sm concentrations effectively enhance the SnO2 film surface. The composition of SnO2 and Sm doped SnO2 films is analyzed by energy dispersive X-ray spectroscopy (EDX) analysis. The deposited films possess an average transmittance ranging from 64 to 94%. The band edge potential calculation for SnO2 and Sm doped SnO2 thin films indicates the presence of an impurity energy level, which is favourable for visible light performance. Photoluminescence (PL) analysis demonstrates that the prepared thin films have strong emissions at around 493 and 520 nm. The 0.25 wt% Sm doped SnO2 thin film possesses visible light photocatalytic degradation efficiency of 85% against the methylene blue (MB) dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

“Not applicable”.

References

  1. Raj LP, Revathy MS, Jegatha Christy A, Chidhambaram N, Ganesh V, AlFaif S (2020) Study on the synergistic effect of terbium-doped SnO2 thin film photocatalysts for dye degradation. J Nanopart Res 12(22):359. https://doi.org/10.1007/s11051-020-05084-2

    Article  CAS  Google Scholar 

  2. Ansari SA, Khan MM, Ansari MO, Cho JLMH (2014) Visible light-driven photocatalytic and photochemical studies of Ag-SnO2 nanocomposite synthesized using an electrochemically active biofilm. RSC Adv 4:26013–26021. https://doi.org/10.1039/C4RA03448A

    Article  CAS  Google Scholar 

  3. Arfaoui A, Mhamdi A, Besrour N, Touihri S, Ouzari HI, Alrowaili ZA, Amlouk M (2018) Investigations into the physical properties of SnO2/MoO3 and SnO2/WO3 bi-layered structures along with photocatalytic and antibacterial applications. Thin Solid Films 648:12–20. https://doi.org/10.1016/j.tsf.2018.01.002

    Article  CAS  Google Scholar 

  4. Lewis BG, Paine DC (2000) Applications and processing of transparent conducting oxides. MRS Bull 25:22–27

    Article  CAS  Google Scholar 

  5. Shukla GP, Pandey CK, Bajpai M, Bhatnagar MC, Dhar R (2019) Ammonia gas sensor based on SnO2 nanostructure with the enhanced sensing capability at low temperatures. Phase Transitions 92:939–947. https://doi.org/10.1080/01411594.2019.1660878

    Article  CAS  Google Scholar 

  6. Ting Xie Md, Rezaul HB, Qiu ES, Arinze NV, Nguyen AM, Thon SM, Debnath R (2015) High-performing visible-blind photodetectors based on SnO2/CuO nano heterojunctions. Appl Phys Lett 107:241108. https://doi.org/10.1063/1.4938129

    Article  CAS  PubMed  Google Scholar 

  7. Kim J, Wong S, Kim G, Park Y-B, van Embden J, Gaspera ED (2020) Transparent electrodes based on spray coated fluorine-doped tin oxide with enhanced optical, electrical and mechanical properties. J Mater Chem C 8:14531–14539. https://doi.org/10.1039/D0TC03314F

    Article  CAS  Google Scholar 

  8. Asaithambi S, Sakthivel P, Karuppaiah M, Udhaya Sankar G, Balamurugan K, Yuvakkumar R, Thambidurai M, Ravi G (2020) Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications. J Energy Storage 31:101530. https://doi.org/10.1016/j.est.2020.101530

    Article  Google Scholar 

  9. Akbar Mohammad Md, Karim R, Khan ME, Khan MM, Cho MH (2019) Biofilm-assisted fabrication of Ag @ SnO2-g-C3N4 nanostructures for visible light-induced photocatalysis and photoelectrochemical performance. J Mater Chem C 123:20936–20948. https://doi.org/10.1021/acs.jpcc.9b05105

    Article  CAS  Google Scholar 

  10. Muhammad R, Islam MR, Farhad SFU, Podder J (2019) Structural, optical and photocatalysis properties of sol–gel deposited Al-doped ZnO thin films. Surf Interfaces 16:120–126. https://doi.org/10.1016/j.surfin.2019.05.007

    Article  CAS  Google Scholar 

  11. Jiawei Hu, JiaxinWu SZ, Chen W, Xiao W, Hou H, Xiaowang Lu, Liu C, Zhang Q (2023) One-pot fabrication of 2D/2D CdIn2S4/In2S3 heterojunction for boosting photocatalytic Cr (VI) reduction. Catalysts 13:826. https://doi.org/10.3390/catal13050826

    Article  CAS  Google Scholar 

  12. Hunge YM, Yadav AA, Kang S-W (2022) Photocatalytic degradation of eriochrome black-T using BaWO4/MoS2 composite. Catalysts 12:1290. https://doi.org/10.3390/catal12101290

    Article  CAS  Google Scholar 

  13. Hunge YM, Uchida A, Tominaga Y, Fujii Y, Yadav AA, Kang S-W, Suzuki N, Shitanda I, Kondo T, Itagaki M, Yuasa M, Gosavi S, Fujishima A, Terashima C (2021) Visible light-assisted photocatalysis using spherical-shaped BiVO4 photocatalyst. Catalysts 11:460. https://doi.org/10.3390/catal11040460

    Article  CAS  Google Scholar 

  14. Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. J Mol Catal A: Chem 328:8–26. https://doi.org/10.1016/j.molcata.2010.05.023

    Article  CAS  Google Scholar 

  15. Yao B, Peng C, Zhang W, Zhang Q, Niu J, Zhao J (2015) A novel Fe (III) porphyrin-conjugated TiO2 visible-light photocatalyst. Appl Catal B: Environ 174–175:77–84. https://doi.org/10.1016/j.apcatb.2015.02.030

    Article  CAS  Google Scholar 

  16. Khan SR, Khalid MU, Jamil S, Li S, Mujahid A, Janjua MRSA (2018) Photocatalytic degradation of reactive black 5 on the surface of tin oxide microrods. J Water Health 16:773–781. https://doi.org/10.2166/wh.2018.033

    Article  PubMed  Google Scholar 

  17. Kumar S, Kumar M, Thakur A, Patial S (2017) Water treatment using photocatalytic and antimicrobial activities of tin oxide nanoparticles. Indian J Chem Technol 24:435–440. https://doi.org/10.56042/ijct.v24i4.12356

    Article  CAS  Google Scholar 

  18. Kim SP, Choi MY, Choi HC (2016) Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mater Res Bull 74:85–89. https://doi.org/10.1016/j.materresbull.2015.10.024

    Article  CAS  Google Scholar 

  19. Kim J, Lee CW, Choi W (2010) Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ Sci Technol 44:6849–6854. https://doi.org/10.1021/es101981r

    Article  CAS  PubMed  Google Scholar 

  20. Hunge YM, Mahadik MA, Bulakhe RN, Yadav SP, Shim JJ, Moholkar AV, Bhosale CH (2017) Oxidative degradation of benzoic acid using spray deposited WO3/TiO2 thin films. J Mater Sci: Mater Electron 28:17976–17984. https://doi.org/10.1007/s10854-017-7740-6

    Article  CAS  Google Scholar 

  21. Lakhera SK, Watts A, Hafeez HY, Neppolian B (2018) Interparticle double charge transfer mechanism of heterojunction α-Fe2O3/Cu2O mixed oxide catalysts and its visible light photocatalytic activity. Catal Today 300:58–70. https://doi.org/10.1016/j.cattod.2017.03.020

    Article  CAS  Google Scholar 

  22. Letifi H, Litaiem Y, Dridi D, Ammar S, Chtourou R (2019) Enhanced photocatalytic activity of vanadium-doped SnO2 nanoparticles in rhodamine B degradation. Adv Condens Matter Phys 11. https://doi.org/10.1155/2019/2157428

  23. Hunge YM, Yadav AA, Kang S-W, Mohite BM (2023) Role of nanotechnology in photocatalysis application. Recent Pat Nanotechnol 17. https://doi.org/10.2174/1872210516666220304162429

  24. Esro M, Georgakopoulos S, Lu H, Vourlias G, Krier A, Milne WI, Gillin WP, Adamopoulos G (2016) Solution processed SnO2: Sb transparent conductive oxide as an alternative to indium tin oxide for applications in organic light emitting diodes. J Mater Chem C 4:3563–3570. https://doi.org/10.1039/C5TC04117A

    Article  CAS  Google Scholar 

  25. Turgut G (2015) Investigation of characteristic properties of Pr-doped SnO2 Thin films. Taylor Francis 95:1607–1625. https://doi.org/10.1080/14786435.2015.1040479

    Article  CAS  Google Scholar 

  26. KarimaBouras G, Schmerber HR, Aureau D (2015) Structural, optical and electrical properties of Nd-doped SnO2 thin films fabricated by reactive magnetron sputtering for solar cell devices. Sol Energy Mater Sol Cells 145:134–141. https://doi.org/10.1016/j.solmat.2015.07.038

    Article  CAS  Google Scholar 

  27. Liang Y-C, Lee C-M, Lo Y-J (2017) Reducing gas-sensing performance of Ce-doped SnO2 thin films through a co-sputtering method. RSC Adv 7:4724–4734. https://doi.org/10.1039/C6RA25853K

    Article  CAS  Google Scholar 

  28. Ganesh V, AlFaify S (2019) Effect of La doping on key characteristics of SnO2 thin films facilely fabricated by spin coating technique. Opt Mater 94:277–285. https://doi.org/10.1016/j.optmat.2019.05.053

    Article  CAS  Google Scholar 

  29. Jeong-Seok Park II, Park K (2020) Realization of Eu- doped P-SnO2 thin film by spray pyrolysis deposition. Ceram Int 46:430–434. https://doi.org/10.1016/j.ceramint.2019.08.279

    Article  CAS  Google Scholar 

  30. Bakiya Lakshmi R, Vimala Juliet A (2019) Effect of annealing on humidity sensing properties of Sm doped SnO2 thin films. J Mater Res Technol 8:5862–5866. https://doi.org/10.1016/j.jmrt.2019.09.057

    Article  CAS  Google Scholar 

  31. Nagasawa Y, Tabata K, Ohnishi H (1997) Sensitivity control of SnO2 by morphology of thin film. Appl Surf Sci 121(122):327–330. https://doi.org/10.1016/S0169-4332(97)00317-6

    Article  Google Scholar 

  32. Yan H, Chen GH, Man WK, Wong SP, Kwok RWM (1998) Characterizations of SnO2 thin films deposited on Si substrates. Thin Solid Films 326:88–91. https://doi.org/10.1016/S0040-6090(98)00530-6

    Article  CAS  Google Scholar 

  33. Pusawale SN, Deshmukh PR, Lokhande CD (2011) Chemical synthesis of nanocrystalline SnO2 thin films for supercapacitor application. Appl Surf Sci 257:9498–9502. https://doi.org/10.1016/j.apsusc.2011.06.043

    Article  CAS  Google Scholar 

  34. Min S, Jeong J (2013) A study of a typical grain growth properties for SnO2 thin films. Mater Sci Semicond Process 16:1267–1270. https://doi.org/10.1016/j.mssp.2013.01.026

    Article  CAS  Google Scholar 

  35. Priyadarshini DM, Mannam R, Ramachandra Rao MS, Gupta ND (2016) Effect of annealing ambient on SnO2 thin film transistors. Appl Surf Sci 1–4. https://doi.org/10.1016/j.apsusc.2016.11.233

  36. Blandenet G, Court M, Lagarde Y (1981) Thin layers deposited by the pyrosol process. Thin Solid Films 77:81–90. https://doi.org/10.1016/0040-6090(81)90362-x

    Article  CAS  Google Scholar 

  37. Cao E, Zhang Y, Hao W, Peng H, Sun L, Jifan Hu (2013) Room temperature ferromagnetism in Sm-doped SnO2 PLD film. Appl Surf Sci 282:376–383. https://doi.org/10.1016/j.apsusc.2013.05.139

    Article  CAS  Google Scholar 

  38. Bolzan AA, Fong C, Kennedy BJ, Howard CJ (1997) Structural studies of Rutile-type metal dioxides. Acta Crystallogr Sect B 53:373–380. https://doi.org/10.1107/S0108768197001468

    Article  Google Scholar 

  39. Khuspe GD, Sakhare RD, Navale ST, Chougule MA, Kolekar YD, Mulik RN, Pawar RC, Lee CS, Patil VB (2013) Nanostructured SnO2 thin films for NO2 gas sensing applications. Ceram Int 39:8673–8679. https://doi.org/10.1016/j.ceramint.2013.04.047

    Article  CAS  Google Scholar 

  40. Moholkar AV, Pawar SM, Rajpure KY, Bhosale CH, Kim JH (2009) Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films. Appl Surf Sci 255:9358–9364. https://doi.org/10.1016/j.apsusc.2009.07.035

    Article  CAS  Google Scholar 

  41. Chen C, Li Y, Shen M (2020) Structure-related luminescent properties induced by doping in Sm-doped SnO2 hollow spheres. Ceram Int 46:17025–17033. https://doi.org/10.1016/j.ceramint.2020.03.289

    Article  CAS  Google Scholar 

  42. Nagasawa Y, Choso T, Karasuda T, Shimomura S, Ouyang F, Tabata K, Yamaguchi Y (1999) Photoemission study of the interaction of a reduced thin film SnO2with oxygen. Surf Sci 433–435:226–230. https://doi.org/10.1016/S00396028(99)00044-8

    Article  Google Scholar 

  43. Dieguez AR, Rodriguez -, Vila A, Morante JR (2001) The complete Raman spectrum of nanometric SnO2 particles. J Appl Phys 90:1550–1557. https://doi.org/10.1063/1.1385573

    Article  CAS  Google Scholar 

  44. Shaikh FI, Chikhale LP (2017) Enhanced acetone sensing performance of Sm2O3 doped SnO2 thick films. J Rare Earths 35:813–822. https://doi.org/10.1016/S10020721(17)609815

    Article  CAS  Google Scholar 

  45. Xiaoli Xu, Liu W, Wang S (2021) Design of high - sensitivity ethanol sensor based on Pr - doped SnO2 hollow beaded tubular nanostructure. Vacuum 189:110244–110254. https://doi.org/10.1016/j.vacuum.2021.110244

    Article  CAS  Google Scholar 

  46. Yadav AA, Hunge YM, Kang S-W, Fujishima A, Terashima C (2023) Enhanced photocatalytic degradation activity using the V2O5/RGO composite. J Nanomater 13:338. https://doi.org/10.3390/nano13020338

    Article  CAS  Google Scholar 

  47. Hirami Y, Hunge YM, Suzuki N, Rodríguez-González V, Kondo T, Yuasa M, Fujishima A, Teshima K, Terashima C (2023) Enhanced degradation of ibuprofen using a combined treatment of plasma and Fenton reactions. J Colloid Interface Sci 642:829–836. https://doi.org/10.1016/j.jcis.2023.02.136

    Article  CAS  PubMed  Google Scholar 

  48. Hunge YM, Yadav AA, Kang S-W, Lim SJ, Kim H (2023) Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic and hydrogen production. J Photochem Photobiol A: Chem 434:114250. https://doi.org/10.1016/j.jphotochem.2022.114250

    Article  CAS  Google Scholar 

  49. Fageria P, Nazir R, Gangopadhyay S, Barshilia HC, Pande S (2015) Graphitic-carbon nitride support for the synthesis of shape-dependent ZnO and their application in visible light photocatalysts. RSC Adv 5:80397–80409. https://doi.org/10.1039/C5RA12463H

    Article  CAS  Google Scholar 

  50. Tanur Sinha Md, Ahmaruzzaman PP, Adhikari RB (2017) Green and environmentally sustainable fabrication of Ag-SnO2 nanocomposite and its multifunctional efficacy as photocatalyst and antibacterial and antioxidant agent, ACS Sustain. Chem Eng 5:4645–4655. https://doi.org/10.1021/acssuschemeng.6b03114

    Article  CAS  Google Scholar 

  51. Bhuvaneswari K, Pazhanivel T, Palanisamy G, Bharathi G (2020) CTAB-aided surface-modified tin oxide nanoparticles as an enhanced photocatalyst for water treatment. J Mater Sci: Mater Electron 31:6618–6628. https://doi.org/10.1007/s10854-020-03217-w

    Article  CAS  Google Scholar 

  52. Prakash K, Senthil Kumar P, Pandiaraj S, Saravanakumar K, Karuthapandian S (2016) Controllable synthesis of SnO2 photocatalyst with superior photocatalytic activity for the degradation of methylene blue dye solution. J Exp Nanosci 11:1138–1155. https://doi.org/10.1080/17458080.2016.1188222

    Article  CAS  Google Scholar 

  53. Keerthana SP, Yuvakkumar R, Ravi G, Manimegalai M, MehboobaliPannipara AG, Al-Sehemi RA, Gopal MM, Hanafiah DhayalanVelauthapillai (2021) Investigation on (Zn) doping and anionic surfactant (SDS) effect on SnO2 nanostructures for enhanced photocatalytic RhB dye degradation. Environ Res 199:111312. https://doi.org/10.1016/j.envres.2021.111312

    Article  CAS  PubMed  Google Scholar 

  54. Kumar M, Bhatt V, Abhyankar AC, Kim JD, Kumar A, Patil SH, Yun J-H (2018) New insights towards strikingly improved room temperature ethanol sensing properties of p-type Ce-doped SnO2 sensors. Sci Rep 8:8079. https://doi.org/10.1038/s41598-018-26504-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi S, Gao D, Qiang Xu, Yang Z, Xue D (2014) Singly-charged oxygen vacancy-induced ferromagnetism in mechanically milled SnO2 powders. RSC Adv 4:45467. https://doi.org/10.1039/c4ra05475j

    Article  CAS  Google Scholar 

  56. Choudhury B, Choudhury A (2013) Room temperature ferromagnetism in defective TiO2 nanoparticles: role of surface and grain boundary oxygen vacancies. J Appl Phys 114:203906. https://doi.org/10.1063/1.4833562

    Article  CAS  Google Scholar 

  57. Vadivel S, Rajarajan G (2015) Effect of Mg doping on structural, optical and photocatalytic activity of SnO2 nanostructure thin films. J Mater Sci: Mater Electron 26:3155–3162. https://doi.org/10.1007/s10854-015-2811-z

    Article  CAS  Google Scholar 

  58. Haya S, Brahmia O, Halimi O, Sebais M, Boudine B (2017) Sol–gel synthesis of Sr-doped SnO2 thin films and their photocatalytic properties. Mater Res Express 4:106406. https://doi.org/10.1088/2053-1591/aa8deb

    Article  CAS  Google Scholar 

  59. Han Ke, Peng X-L, Li F, YaO M-M (2018) SnO2 composite films for enhanced photocatalytic activities. Catalysts 8:453. https://doi.org/10.3390/catal8100453

    Article  CAS  Google Scholar 

  60. Ayadi M, Benhaoua O, Sebais M, Halimi O, Boudine B, Aida MS (2019) Effect of cerium doping on the structural, optical and photocatalytic properties of SnO2 thin films prepared by spray pyrolysis method. Mater Res Express 6:076407. https://doi.org/10.1088/2053-1591/ab10c5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author KA would like to acknowledges the Science and Engineering Research Board (SERB), Government of India (SERB/F/2586/2013-14). The author KA would like to gratefully acknowledge the National Centre for Photovoltaic Research and Education (NCPRE) at IIT Bombay funded by the Ministry of New and Renewable Energy, Government of India, for providing a major characterization facility for FESEM, XPS measurement. The author RR gratefully acknowledges MOE-RUSA 1.0 physical sciences for departmental financial support.

Funding

The author KA would like to acknowledges the Science and Engineering Research Board (SERB), Government of India (SERB/F/2586/2013–14). The author RR gratefully acknowledges MOE-RUSA 1.0 (R & I) physical sciences for financial support.

Author information

Authors and Affiliations

Authors

Contributions

A. Conceptualization, methodology, software: K. Arjunan.

B. Data Curation, Writing-Original draft preparation: K. Arjunan.

C. Visualization, Investigation: K. Arjunan.

D. Supervision: R. Ramesh Babu.

E. Software, Validation: K. Arjunan.

F. Writing-receiving and editing: K. Arjunan & R. Ramesh Babu.

Corresponding author

Correspondence to R. Ramesh Babu.

Ethics declarations

Conflict of interest

The authors announce that they have no known competing financial interests or personal associations that could have appeared to persuade the work presented in this paper.

Competing interests

“Not applicable”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjunan, K., Ramesh Babu, R. Fabrication of samarium doped SnO2 thin films using facile spray pyrolysis technique for photocatalysis application. Ionics 30, 491–507 (2024). https://doi.org/10.1007/s11581-023-05256-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05256-9

Keywords

Navigation