Skip to main content
Log in

Nanoarchitectonics of Zn2SnO4/ZnO heterostructure composites for better photocatalytic performance

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, the Zn2SnO4/ZnO nanocomposites synthesized by one-step hydrothermal method had been characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and surface area analysis (BET) techniques, while the photocatalytic activity of the Zn2SnO4/ZnO had been investigated during the degradation process of organic pollutants under UV irradiation. The results indicate that the Zn2SnO4/ZnO displays a cube and rod-shape intertwined structure, which allows the material to maintain a large specific surface area while preserving its structural stability. The nanocomposite demonstrates a high photocatalytic activity in the degradation of methylene blue (MB), ofloxacin antibiotics (OFL), and 5% cis–trans cypermethrin emulsion (5% CTC). The heterostructure of the Zn2SnO4/ZnO effectively inhibited the electron–hole recombination, greatly improved the activity and stability of the catalyst, and effectively promoted the catalytic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R, Connell D, Phung DT (2021) Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health 18(3):1112. https://doi.org/10.3390/ijerph18031112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Poudel S, Poudel B, Acharya B et al (2020) Pesticide use and its impacts on human health and environment. Environ Ecosyst Sci 4(1):47–51. https://doi.org/10.26480/ees.01.2020.47.51

    Article  Google Scholar 

  3. Yadav IC, Devi NL (2017) Pesticides classification and its impact on human and environment. Environ Sci Eng 6:140–158. https://doi.org/10.20546/ijcmas.2019.803.224

    Article  CAS  Google Scholar 

  4. Kanan S, Moyet MA, Arthur RB, Patterson HH (2019) Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catalysis Reviews. https://doi.org/10.1080/01614940.2019.1613323

    Article  Google Scholar 

  5. Paul T, Dodd MC, Strathmann TJ (2010) Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity. Water Res 44(10):3121–3132. https://doi.org/10.1016/j.watres.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  6. Sturini M, Speltini A, Maraschi F, Profumo A, Pretali L, Irastorza EA, Albini A (2012) Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight. Appl Catal B 119:32–39. https://doi.org/10.1016/j.apcatb.2012.02.008

    Article  CAS  Google Scholar 

  7. Kansal SK, Kundu P, Sood S, Lamba R, Umar A, Mehta SK (2014) Photocatalytic degradation of the antibiotic levofloxacin using highly crystalline TiO2 nanoparticles. New J Chem 38(7):3220–3226. https://doi.org/10.1039/C3NJ01619F

    Article  CAS  Google Scholar 

  8. Zivanovic L, Zigic G, Zecevic M (2006) Investigation of chromatographic conditions for the separation of ofloxacin and its degradation products. J Chromatogr A 1119(1–2):224–230. https://doi.org/10.1016/j.chroma.2006.02.029

    Article  CAS  PubMed  Google Scholar 

  9. Kundu P, Kaur A, Mehta SK, Kansal SK (2014) Removal of ofloxacin from aqueous phase using Ni-doped TiO2 nanoparticles under solar irradiation. J Nanosci Nanotechnol 14(9):6991–6995. https://doi.org/10.1166/jnn.2014.9238

    Article  CAS  PubMed  Google Scholar 

  10. Lode HARTMUT, Höffken G, Olschewski P, Sievers B, Kirch A, Borner K, Koeppe P (1987) Pharmacokinetics of ofloxacin after parenteral and oral administration. Antimicrob Agents Chemother 31(9):1338–1342. https://doi.org/10.1128/aac.31.9.1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wong FA, Flor SC (1990) The metabolism of ofloxacin in humans. Drug Metab Dispos 18(6):1103–1104

    CAS  PubMed  Google Scholar 

  12. R Kant 2011 Textile dyeing industry an environmental hazardhttps://doi.org/10.4236/ns.2012.41004

  13. Lam SM, Sin JC, Abdullah AZ, Mohamed AR (2012) Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalin Water Treat 41(1–3):131–169. https://doi.org/10.1080/19443994.2012.664698

    Article  CAS  Google Scholar 

  14. Wang J, Qu F, Wu X (2013) Photocatalytic degradation of organic dyes with hierarchical Ag2O/ZnO heterostructures. Sci Adv Mater 5(10):1364–1371. https://doi.org/10.1166/sam.2013.1597

    Article  CAS  Google Scholar 

  15. Gao B, Feng X, Zhang Y, Zhou Z, Wei J, Qiao R, Zhang X (2024) Graphene-based aerogels in water and air treatment: a review. Chem Eng J 149604. https://doi.org/10.1016/j.cej.2024.149604

  16. Wei J, Zhang Y, Zhou Z, Bi F, Qiao R, Jiang S, Zhang X (2024) PVP-modified spindle-shaped MIL-88B (Fe) to enhance the degradation of tetracycline by activated peroxodisulfate: a comparative study and mechanistic investigation. Progress in Natural Science: Materials International 33(6):872–80. https://doi.org/10.1016/j.pnsc.2023.12.020

    Article  CAS  Google Scholar 

  17. Yang Y, Jie B, Zhai Y, Zeng Y, Kang J, Cheng G, Zhang X (2024) Performance and mechanism of efficient activation of peroxymonosulfate by Co-Mn-ZIF derived layered double hydroxide for the degradation of enrofloxacin. J Mol Liq 394:123723. https://doi.org/10.1016/j.molliq.2023.123723

    Article  CAS  Google Scholar 

  18. Yang Y, Jie B, Ye J, Gan F, Yu S, Lin H, Zhang X (2023) N-doped catalysts built by iron-based metal–organic framework efficiently activated peroxymonosulfate for the tetracycline degradation. J Mol Liq 392:123505. https://doi.org/10.1016/j.molliq.2023.123505

    Article  CAS  Google Scholar 

  19. Wang Y, Li H, Xu J, Yu J, Wang J, Jiang H, Liu N (2024) High-performance carbon@ metal oxide nanocomposites derived metal–organic framework-perovskite hybrid boosted microwave-induced catalytic degradation of norfloxacin: performance, degradation pathway and mechanism. Sep Purif Technol 330:125399. https://doi.org/10.1016/j.seppur.2023.125399

    Article  CAS  Google Scholar 

  20. Vinu R, Madras G (2010) Environmental remediation by photocatalysis. J Indian Inst Sci 90(2):189–230. https://doi.org/10.1515/ijcre-2012-0003

    Article  CAS  Google Scholar 

  21. Wang Y, Li H, Xia W, Yu L, Yao Y, Zhang X, Jiang H (2023) Synthesis of carbon microsphere-supported nano-zero-valent iron sulfide for enhanced removal of Cr (VI) and p-nitrophenol complex contamination in peroxymonosulfate system. J Mol Liq 390:123089. https://doi.org/10.1016/j.molliq.2023.123089

    Article  CAS  Google Scholar 

  22. Wang Y, Lin N, Xu J, Jiang H, Chen R, Zhang X, Liu N (2023) Construction of microwave/PMS combined dual responsive perovskite-MXene system for antibiotic degradation: synergistic effects of thermal and non-thermal. Appl Surf Sci 639:158263. https://doi.org/10.1016/j.apsusc.2023.158263

    Article  CAS  Google Scholar 

  23. Kacem K, Casanova-Chafer J, Hamrouni A, Ameur S, Güell F, Nsib MF, Llobet E (2023) ZnO–TiO2/rGO hetero -structure for enhanced photodegradation of IC dye under natural solar light and role of rGO in surface hydroxylation. Bull Mater Sci 46(2):83. https://doi.org/10.1007/s12034-023-02913-7

    Article  CAS  Google Scholar 

  24. Hamrouni A, Moussa M, Fessi N, Palmisano L, Ceccato R, Rayes A, Parrino F (2023) Solar photocatalytic activity of Ba-doped ZnO nanoparticles: the role of surface hydrophilicity. Nanomaterials 13(20):2742. https://doi.org/10.3390/nano13202742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang J, Liu R, Kuang M, Wang J, Ji Z (2023) Effect of calcination temperature on surface acidity and photocatalytic activity of nano-TiO2/diatomite composite photocatalyst. Sci Adv Mater 15(6):781–790. https://doi.org/10.1166/sam.2023.4454

    Article  CAS  Google Scholar 

  26. Su F, Huang J, Xu Y (2023) Facile fabrication of Bi2MoO6/g-C3N4 heterojunction nanosheets: facile synthesis and enhanced visible light photocatalytic property. Sci Adv Mater 15(7):905–914. https://doi.org/10.1166/sam.2023.4496

    Article  CAS  Google Scholar 

  27. Barick KC, Singh S, Aslam M, Bahadur D (2010) Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Microporous Mesoporous Mater 134(1–3):195–202. https://doi.org/10.1016/j.micromeso.2010.05.026

    Article  CAS  Google Scholar 

  28. Georgekutty R, Seery MK, Pillai SC (2008) A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C 112(35):13563–13570. https://doi.org/10.1021/jp802729a

    Article  CAS  Google Scholar 

  29. Li G, Gray KA (2007) The solid–solid interface: explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem Phys 339(1–3):173–187. https://doi.org/10.1016/j.chemphys.2007.05.023

    Article  CAS  Google Scholar 

  30. Zhu YP, Li M, Liu YL, Ren TZ, Yuan ZY (2014) Carbon-doped ZnO hybridized homogeneously with graphitic carbon nitride nanocomposites for photocatalysis. J Phys Chem C 118(20):10963–10971. https://doi.org/10.1021/jp502677h

    Article  CAS  Google Scholar 

  31. Sun JH, Dong SY, Feng JL, Yin XJ, Zhao XC (2011) Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation. J Mol Catal A: Chem 335(1–2):145–150. https://doi.org/10.1016/j.molcata.2010.11.026

    Article  CAS  Google Scholar 

  32. Zhang Z, Xu M, Liu L, Ruan X, Yan J, Zhao W, Zhang T (2018) Novel SnO2@ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing. Sens Actuators, B Chem 257:714–727. https://doi.org/10.1016/j.snb.2017.10.190

    Article  CAS  Google Scholar 

  33. Song J, Zheng E, Wang XF, Tian W, Miyasaka T (2016) Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells. Sol Energy Mater Sol Cells 144:623–630. https://doi.org/10.1016/j.solmat.2015.09.054

    Article  CAS  Google Scholar 

  34. Bi F, Feng X, Zhou Z, Zhang Y, Wei J, Yuan L, Zhang X (2024) Mn-based catalysts derived from the non-thermal treatment of Mn-MIL-100 to enhance its water-resistance for toluene oxidation: mechanism study. Chem Eng J 149776. https://doi.org/10.1016/j.cej.2024.149776

  35. Lou X, Jia X, Xu J, Liu S, Gao Q (2006) Hydrothermal synthesis, characterization and photocatalytic properties of Zn2SnO4 nanocrystal. Mater Sci Eng, A 432(1–2):221–225. https://doi.org/10.1016/j.msea.2006.06.010

    Article  CAS  Google Scholar 

  36. Fu X, Wang X, Long J, Ding Z, Yan T, Zhang G, Fu X (2009) Hydrothermal synthesis, characterization, and photocatalytic properties of Zn2SnO4. J Solid State Chem 182(3):517–524. https://doi.org/10.1016/j.jssc.2008.11.029

    Article  CAS  Google Scholar 

  37. Bai XL, Pan N, Wang XP, Wang HQ (2008) Synthesis and photocatalytic activity of one-dimensional ZnO-Zn2SnO4 mixed oxide nanowires. Chin J Chem Phys 21(1):81 (http://iopscience.iop.org/1674-0068/21/1/11)

    Article  CAS  Google Scholar 

  38. Hamrouni A, Moussa N, Parrino F, Di Paola A, Houas A, Palmisano L (2014) Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites. J Mol Catal A: Chem 390:133–141. https://doi.org/10.1016/j.molcata.2014.03.018

    Article  CAS  Google Scholar 

  39. Jia B, Jia W, Qu F, Wu X (2013) General strategy for self assembly of mesoporous SnO2 nanospheres and their applications in water purification. RSC Adv 3(30):12140–12148. https://doi.org/10.1039/C3RA41638K

    Article  CAS  Google Scholar 

  40. Han Y, Wei M, Qu S, Zhong M, Han L, Yang H, Lei Z (2020) Ag@ AgCl quantum dots embedded on Sn3O4 nanosheets towards synergistic 3D flower-like heterostructured microspheres for efficient visible-light photocatalysis. Ceram Int 46(15):24060–24070. https://doi.org/10.1016/j.ceramint.2020.06.184

    Article  CAS  Google Scholar 

  41. Motevalli K, Ebadi M, Salehi Z (2017) Synthesis of Ag–AgO/Al2O3 nanocomposite via a facile two-step method for photodegradation of methylene blue. J Mater Sci Mater Electron 28:13024–13031. https://doi.org/10.1007/s10854-017-7134-9

    Article  CAS  Google Scholar 

  42. Solano Pizarro RA, Herrera Barros AP (2020) Cypermethrin elimination using Fe-TiO2 nanoparticles supported on coconut palm spathe in a solar flat plate photoreactor. Adv Compos Lett 29. https://doi.org/10.1177/2633366X20906164

  43. Bhatia V, Ray AK, Dhir A (2016) Enhanced photocatalytic degradation of ofloxacin by co-doped titanium dioxide under solar irradiation. Sep Purif Technol 161:1–7. https://doi.org/10.1016/j.seppur.2016.01.028

    Article  CAS  Google Scholar 

  44. Adhikari S, Kim DH (2018) Synthesis of Bi2S3/Bi2WO6 hierarchical microstructures for enhanced visible light driven photocatalytic degradation and photoelectrochemical sensing of ofloxacin. Chem Eng J 354:692–705. https://doi.org/10.1016/j.cej.2018.08.087

    Article  CAS  Google Scholar 

  45. Gupta G, Umar A, Kaur A, Sood S, Dhir A, Kansal SK (2018) Solar light driven photocatalytic degradation of ofloxacin based on ultra-thin bismuth molybdenum oxide nanosheets. Mater Res Bull 99:359–366. https://doi.org/10.1016/j.materresbull.2017.11.033

    Article  CAS  Google Scholar 

  46. Shi L, Dai Y (2013) Synthesis and photocatalytic activity of Zn2SnO4 nanotube arrays. J Mater Chem A 1(41):12981–12986. https://doi.org/10.1039/C3TA12388J

    Article  CAS  Google Scholar 

  47. Wang YN, Li J, Wang Q (2020) The performance of daylight photocatalytic activity towards degradation of MB by the flower-like and approximate flower-like complexes of graphene with ZnO and Cerium doped ZnO. Optik 204:164131. https://doi.org/10.1016/j.ijleo.2019.164131

    Article  CAS  Google Scholar 

  48. Preethi G, Balan R, Nagaswarupa HP (2021) Hydrothermal synthesis of Zn2SnO4/ZnO composite for the degradation of organic pollutant Methylene Blue under UV irradiation. Mater Today Proc 47:4566–4570. https://doi.org/10.1016/j.matpr.2021.05.433

    Article  CAS  Google Scholar 

  49. Lee JW, Nam SH, Yu JH, Kim DI, Jeong RH, Boo JH (2019) Morphological modulation of urchin-like Zn2SnO4/SnO2 hollow spheres and their applications as photocatalysts and quartz crystal microbalance measurements. Appl Surf Sci 474:78–84. https://doi.org/10.1016/j.apsusc.2018.05.039

    Article  CAS  Google Scholar 

  50. Dong S, Cui L, Tian Y, Xia L, Wu Y, Yu J, Fan M (2020) A novel and high-performance double Z-scheme photocatalyst ZnO-SnO2-Zn2SnO4 for effective removal of the biological toxicity of antibiotics. J Hazard Mater 399:123017. https://doi.org/10.1016/j.jhazmat.2020.123017

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by General Project of Science Research Foundation of Liaoning Province (LJKZ0363).

Author information

Authors and Affiliations

Authors

Contributions

Wenlei Wang has done the whole work and written the entire manuscript. Wenquan Hu and Ming Wang have corrected the entire manuscript and supported the research funding. The photocatalytic experiments have been done by Zhikang Chen and Qi Chen.

Corresponding authors

Correspondence to Wenquan Hu or Ming Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 255 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Wang, W., Chen, Z. et al. Nanoarchitectonics of Zn2SnO4/ZnO heterostructure composites for better photocatalytic performance. Ionics (2024). https://doi.org/10.1007/s11581-024-05553-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05553-x

Keywords

Navigation