Skip to main content
Log in

Critical assessment of a Ce-doped SnO2 loaded on PPSAC composite photocatalyst on improved photocatalytic activity under visible light

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The photodegradation of organic dye by Ce-doped SnO2-loaded Pongamia pinnata shell-activated carbon (Ce:SnO2/PPSAC) is investigated in this study. Pure SnO2, Ce-doped SnO2 and loaded samples were synthesized using a chemical precipitation technique. The all-product samples were characterized by XRD, XPS, FE-SEM with EDS, FTIR, UV-Vis, PL and EIS analysis. XRD pattern showed that the average crystallite size is reducing (14.19 nm) upon Ce-doping and PPSAC-loading sample compared to the pure SnO2. The band gap decreases (3.47 eV) upon Ce-doping and loading on PPSAC compared to SnO2. Moreover, the separation of the photogenerated charge carriers was improved by the Ce:SnO2/PPSAC, which decreases PL emission intensity. The photocatalytic activity for rhodamine B (RhB) degradation under visible light was investigated. The photodegradation efficiency of Ce:SnO2/PPSAC was found to be 98.94% under 105 min, which was greater than the other samples. The features developed in Ce-doped and loaded PPSAC contribute to the improved photocatalytic activity of Ce:SnO2/PPSAC by reducing the band gap, inhibiting electron-hole recombination, and improving the charge separation of photogenerated carriers. A possible photocatalytic mechanism for the decomposition of RhB was proposed. This study shows that Ce:SnO2/PPSAC is a potentially promising material for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All obtained data during this work are included in this manuscript.

References

  1. Karpuraranjith M, Chen Y, Wang X, Yu B, Rajaboopathi S, Yang DX (2019) Hexagonal SnSe nanoplate supported SnO2-CNTs nanoarchitecture for enhanced photocatalytic degradation under visible light driven. Appl Surf Sci 30:145026

    Google Scholar 

  2. Utami M, Wang S, Fajarwati FI, Salsabilla SN, Dewi TA, Fitri M (2023) Enhanced photodegradation of rhodamine B using visible-light sensitive N-TiO2/rGO composite. Crystals 13:588

    CAS  Google Scholar 

  3. Chen S, Liu F, Xu M, Yan JF, Zhang FC, Zhao W, Zhang ZY, Deng ZH, Yun JN, Chen RY, Liu CL (2019) First-principles calculations and experimental investigation on SnO2@ZnO heterojunction photocatalyst with enhanced photocatalytic performance. J Colloid Interface Sci 553:613–621

    CAS  PubMed  Google Scholar 

  4. Lwin HM, Zhan W, Song SX, Jia FF, Zhou JB (2019) Visible-light photocatalytic degradation pathway of tetracycline hydrochloride with cubic structured ZnO/SnO2 heterojunction nanocatalyst. Chem Phys Lett 736:136806

    CAS  Google Scholar 

  5. Rescigno R, Sacco O, Venditto V, Fusco A, Donnarumma G, Lettieri M, Fittipaldi R, Vaiano V (2023) Photocatalytic activity of P-doped TiO2 photocatalyst. Photochem Photobiol Sci 22:1223–1231

    CAS  PubMed  Google Scholar 

  6. Supin KK, Parvathy Namboothiri PM, Vasundhara M (2023) Enhanced photocatalytic activity in ZnO nanoparticles developed using novel Lepidagathis ananthapuramensis leaf extract. RSC Adv 13:1497–1515

    Google Scholar 

  7. Migdadi AB, Alqadi MK, Alzoubi FY, Al-Khateeb HM, Bani-Hani WT (2022) Photocatalytic activity of prepared ZnO/CuO nanocomposites and kinetic degradation study of methylene blue. J Mater Sci Mater Electron 33:26744–26763

    CAS  Google Scholar 

  8. Qamar MO, Ahn Y-H (2023) Key parameters for enhancing visible-light-driven photocatalytic activity of ZnS nanoparticle. J Clean Prod 420:138374

    CAS  Google Scholar 

  9. Naidi SN, Harunsani MH, Tan AL, Khan MM (2021) Green-synthesized CeO2 nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities. J Mater Chem B 9:5599–5620

    CAS  PubMed  Google Scholar 

  10. Ragupathy S, Ramasundaram S, Thennarasu G, Harishsenthil P, Krishnakumar M, Oh TH (2023) Effect of Mn doping on structural, optical and photocatalytic properties of SnO2 nanoparticles. Ceram Int 49:17776–17783

    CAS  Google Scholar 

  11. Chang YC, Lin YW (2020) MoS2@SnO2 core-shell sub-microspheres for high efficient visible-light photodegradation and photocatalytic hydrogen production. Mater Res Bull 129:110912

    CAS  Google Scholar 

  12. DiMarco BN, Sampaio RN, James EM, Barr TJ, Bennett MT, Meyer GJ (2020) Efficiency considerations for SnO2-based dye-sensitized solar cells. ACS Appl Mater Interfaces 12:23923–23930

    CAS  PubMed  Google Scholar 

  13. Wang H, Xiong R, Cui Z, Wan J, Sa B, Wu X, Song W, Wang X, Zeng D (2023) Ultrasensitive detection for lithium-ion battery electrolyte leakage by rare-earth Nd-doped SnO2 nanofibers. ACS Sens 8:1700–1709

    CAS  PubMed  Google Scholar 

  14. Kumari H, Sonia S, Ranga R, Chahal S, Devi S, Sharma S, Kumar S, Kumar P, Kumar S, Kumar A, Parmar R (2023) A review on photocatalysis used for wastewater treatment: dye degradation. Water Air Soil Pollut 234:349

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu P, Wang J, Jin H, Ge M, Zhang F, Wang C, Sun Y, Dai N (2023) SnO2 mesoporous nanoparticle-based gas sensor for highly sensitive and low concentration formaldehyde detection. RSC Adv 13:2256–2264

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jeong YJ, Koo WT, Jang JS, Kim DH, Kim MH, Kim ID (2018) Nanoscale PtO2 catalysts-loaded SnO2 multichannel nanofibers toward highly sensitive acetone sensor. ACS Appl Mater Interfaces 10:2016

    CAS  PubMed  Google Scholar 

  17. Keerthana SP, Yuvakkumar R, Ravi G, Manimegalai M, Pannipara M, Al-Sehemi AG, Gopal RA, Hanafiah MM, Velauthapillai D (2021) Investigation on (Zn) doping and anionic surfactant (SDS) effect on SnO2 nanostructures for enhanced photocatalytic RhB dye degradation. Environ Res 199:111312

    CAS  PubMed  Google Scholar 

  18. AlSalhi MS, Devanesan S, Asemi NN, Aldawsari M (2023) Construction of SnO2/CuO/rGO nanocomposites for photocatalytic degradation of organic pollutants and antibacterial applications. Environ Res 222:115370

    CAS  PubMed  Google Scholar 

  19. Ramamoorthy M, Mani D, Karunanithi M, Josphin Mini J, Babu A, Mathivanan D, Ragupathy S, Ahn Y-H (2023) Influence of metal doping and non-metal loading on photodegradation of methylene blue using SnO2 nanoparticles. J Mol Struct 1286:135564

    CAS  Google Scholar 

  20. Pathak TK, Coetsee-Hugo E, Swart HC, Swart CW, R.E. (2020) Kroon, Preparation and characterization of Ce doped ZnO nanomaterial for photocatalytic and biological applications, Mater. Sci & Eng B 261:114780

    CAS  Google Scholar 

  21. Weldekidan H, Patel H, Mohanty A, Misra M (2024) Synthesis of porous and activated carbon from lemon peel waste for CO2 adsorption. Carbon Capture Sci Technol 10:100149

    CAS  Google Scholar 

  22. Akl MA, Mostafa AG, Al-Awadhi M, Al-Harwi WS, El-Zeny AS (2023) Zinc chloride activated carbon derived from date pits for efficient biosorption of brilliant green: adsorption characteristics and mechanism study. Appl Water Sci 13:226

    CAS  Google Scholar 

  23. Karakehya N (2023) Effects of one-step and two-step KOH activation method on the properties and supercapacitor performance of highly porous activated carbons prepared from Lycopodium clavatum spores. Diam Relat Mater 135:109873

    CAS  Google Scholar 

  24. Ziezio M, Charmas B, Jedynak K, M. (2020) Hary Preparation and characterization of activated carbons obtained from the waste materials impregnated with phosphoric acid (V). Appl Nanosci 10:4703–4716

    CAS  Google Scholar 

  25. Ramamoorthy M, Ragupathy S, Sakthi D, Arun V, Kannadasan N (2020) Synthesis of SnO2 loaded on corn cob activated carbon for enhancing the photodegradation of methylene blue under sunlight irradiation. J Environ Chem Eng 8:104331

    CAS  Google Scholar 

  26. Chen N, Liu B, Zhang P, Wang C, Du Y, Chang W, Hong W (2021) Enhanced photocatalytic performance of Ce-doped SnO2 hollow spheres by a one-pot hydrothermal method. Inorg Chem Commun 132:108848

    CAS  Google Scholar 

  27. Kumar V, Bhawna SK, Yadav A, Gupta B, Dwivedi A, Kumar P, Singh Deori K (2019) Facile synthesis of Ce–doped SnO2 nanoparticles: a promising photocatalyst for hydrogen evolution and dyes degradation. Chemistry Select 4:3722–3729

    CAS  Google Scholar 

  28. Al-Hamdi AM, Sillanpaa M, Dutta J (2014) Photocatalytic degradation of phenol in aqueous solution by rare earth-doped SnO2 nanoparticles. J Mater Sci 49:5151–5159

    CAS  Google Scholar 

  29. Geetha M, Renukadevi S, Senthil Kumar D, Ragupathy S (2024) Efficient photocatalytic degradation of rhodamine B using Ag-doped TiO2-loaded groundnut shell activated carbon under solar light. Ionics 30:1167–1176

    CAS  Google Scholar 

  30. Lee JH, Kang Y-M, Roh KC (2023) Enhancing gravimetric and volumetric capacitance in supercapacitors with nanostructured partially graphitic activated carbon. Electrochem Commun 154:107560

    CAS  Google Scholar 

  31. Thirumoolan D, Ragupathy S, Renukadevi S, Rajkumar P, Rajakumar S, Rai S, Kumar RMS, Hasan I, Mani D, Ahn Y-H (2024) Influence of nickel doping and cotton stalk activated carbon loading on structural, optical, and photocatalytic properties of zinc oxide nanoparticles. J Photochem Photobiol 448:115300

    CAS  Google Scholar 

  32. Ullah H, Khan I, Yamani ZH, Qurashi A (2017) Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: growth mechanism structural electrical and hydrogen gas sensing properties. Ultrason Sonochem 34:484–490

    CAS  PubMed  Google Scholar 

  33. Yang Y, Chen C, Wang X (2023) Oxygen vacancy luminescence and band gap narrowing driven by Ce ion doping with variable valence in SnO2 nanocrystals. Ceram Int 49:24922–24930

    CAS  Google Scholar 

  34. Ahmed A, Naseem Siddique M, Ali T, Tripathi P (2019) Defect assisted improved room temperature ferromagnetism in Ce doped SnO2 nanoparticles. Appl Surf Sci 483:463–471

    CAS  Google Scholar 

  35. Sakthivel P, Murugan R, Asaithambi S, Karuppaiah M, Vijayaprasath G, Rajendran S, Hayakawa Y, Ravi G (2018) Radio frequency power induced changes of structural, morphological, optical and electrical properties of sputtered cadmium oxide thin films. Thin Solid Films 654:85–92

    CAS  Google Scholar 

  36. Carvalho MH, Pereira EC, de Oliveira AJA (2018) Orthorhombic SnO2 phase observed composite (Sn1−xCex)O2 synthesized by sol–gel route. RSC Adv 8:3958–3963

    CAS  Google Scholar 

  37. Begum S, Ahmaruzzaman M (2018) Biogenic synthesis of SnO2/activated carbon nanocomposite and its application as photocatalyst in the degradation of naproxen. Appl Surf Sci 449:780–789

    CAS  Google Scholar 

  38. Zhang K, Zhang W, Shen Y, Li Y (2023) Low-cost preparation of ultra-high sensitivity Ce doped SnO2 ethanol gas sensor. Mater Lett 335:133839

    CAS  Google Scholar 

  39. Xu R, Zhang L-X, Li M-W, Yin Y-Y, Yin J, Zhu M-Y et al (2019) Ultrathin SnO2 nanosheets with dominant high-energy {001} facets for low temperature formaldehyde gas sensor. Sens Actuators B Chem 289:186–194

    CAS  Google Scholar 

  40. Li Z, Li S, Song Z, Yang X, Wang Z, Zhang H, Guo L, Sun C, Liu H, Shao J, Cheng Y, Pan G (2022) Influence of nickel doping on ultrahigh toluene sensing performance of core-shell ZnO microsphere gas sensor. Chemosensors 10:327

    CAS  Google Scholar 

  41. Ragupathy S, Sathya T (2017) Synthesis and characterization of ZnS loaded on Pongamia pinnata shell activated carbon and photocatalytic activity on rhodamine B dye under sunlight irradiation. J Mater Sci Mater Electron 28:3020–3028

    CAS  Google Scholar 

  42. Suthakaran S, Dhanapandian S, Krishnakumar N, Ponpandian N (2020) Hydrothermal synthesis of surfactant assisted Zn doped SnO2 nanoparticles with enhanced photocatalytic performance and energy storage performance. J Phys Chem Solids 141:109407

    CAS  Google Scholar 

  43. Pacheco-Salazar DG, Aragón FFH, Villegas-Lelovsky L, Ortiz de Zevallos A, Marques GE, Coaquira JAH (2020) Appl Surf Sci 527:146794

    CAS  Google Scholar 

  44. Tuyen LTT, Quang DA, Tam Toan TT, Tung TQ, Hoa TT, Mau TX, Khieu DQ (2018) Synthesis of CeO2/TiO2 nanotubes and heterogeneous photocatalytic degradation of methylene blue. J Environ Chem Eng 6:5999–6011

    CAS  Google Scholar 

  45. Nomita Devi K, Joychandra Singh W, Jugeshwar Singh K (2017) Effect of Co doping on the structural and optical properties of ZnO nanospindles synthesized by co-precipitation method. J Mater Sci Mater Electron 28:8211–8217

    Google Scholar 

  46. Shenoy S, Jang E, Park TJ, Gopinath CS, Sridharan K (2019) Cadmium sulfide nanostructures: influence of morphology on the photocatalytic degradation of erioglaucine and hydrogen generation. Appl Surf Sci 483:696–705

    CAS  Google Scholar 

  47. Manjunath S, Machappa T, Sunilkumar A, Ravikiran YT (2018) Tungsten disulfide: an efficient material in enhancement of AC conductivity and dielectric properties of polyaniline. J Mater Sci Mater Electron 29:11581–11590

    Google Scholar 

  48. AlMamun MR, Rokon MZI, Rahim MA, Hossain MI, Islam MS, Ali MR, Bacchu MS, Waizumi T, Komeda MZHK (2023) Enhanced photocatalytic activity of Cu and Ni-doped ZnO nanostructures: a comparative study of methyl orange dye degradation in aqueous solution. Heliyon 9:e16506

    CAS  PubMed  Google Scholar 

  49. Faisal M, Harraz FA, Ismail AA, El-Toni AM, Al-Sayari SA, Al-Hajry A, Al-Assiri MS (2018) Novel mesoporous NiO/TiO2 nanocomposites with enhanced photocatalytic activity under visible light illumination. Ceram Int 44:7047–7056

    CAS  Google Scholar 

  50. Chu MN, Hu K, Wang JS, Liu YD, Ali S, Qin CL, Jing LQ (2019) Synthesis of g-C3N4-based photocatalysts with recyclable feature for efficient 2,4-dichlorophenol degradation and mechanisms. Appl Catal B Environ 243:57–65

    CAS  Google Scholar 

  51. Ali MHH, Al-Afify AD, Goher ME (2018) Preparation and characterization of graphene – TiO2 nanocomposite for enhanced photodegradation of rhodamine-B dye. Egypt J Aquat Res 44:263–270

    Google Scholar 

  52. Du Z, Cui C, Zhang S, Xiao H, Ren E, Guo R, Jiang S (2020) Visible-light-driven photocatalytic degradation of rhodamine B using Bi2WO6/GO deposited on polyethylene terephthalate fabric. J Leather Sci Eng 2:16

    Google Scholar 

  53. Mokhtari F, Tahmasebi N (2021) Hydrothermal synthesis of W-doped BiOCl nanoplates for photocatalytic degradation of rhodamine B under visible light. J Phys Chem Solids 149:109804

    CAS  Google Scholar 

  54. Huong VH, Nguyen VC, Ha MN, Pham DV, Nguyen TB, Ma YR, Ngac AB, Loan TT (2023) A S-scheme heterojunction Fe-doped TiO2/SnO2 with rich oxygen vacancies for photo-Fenton degradation of rhodamine B under visible light illumination. Opt Mater 140:113864

    CAS  Google Scholar 

  55. Zhang C, Wu X, Jia T, Chang Y, Liu Z, Fu Y, Liu X, Wang H, Shi Y, Zuo Y (2020) In-situ synthesis of SnO2 quantum dots/ZnS nanosheets heterojunction as a visible-light-driven photocatalyst for degradation of rhodamine B, potassium dichromate and tetracycline. J Wuhan Univ Technol-Mat Sci Edit 35:719–725

    CAS  Google Scholar 

  56. Pascariu P, Airinei A, Olaru N, Olaru L, Nica V (2016) Photocatalytic degradation of rhodamine B dye using ZnO–SnO2 electrospun ceramic nanofibers. Ceram Int 42:6775–6781

    CAS  Google Scholar 

  57. Li Y, Feng Y, Bai H, Liu J, Hu D, Fan J, Shen H (2023) Enhanced visible-light photocatalytic performance of black TiO2/SnO2 nanoparticles. J Alloys Compd 960:170672

    CAS  Google Scholar 

  58. Joshi S, Ippolito SJ, Sunkara MV (2016) Convenient architectures of Cu2O/SnO2 type II p–n heterojunctions and their application in visible light catalytic degradation of rhodamine B. RSC Adv 6:43672–43684

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Researchers Supporting Project number (RSPD2024R993) at King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Sathishkumar or S. Ragupathy.

Ethics declarations

Ethics approval

The manuscript is prepared in compliance with the Publishing Ethics Policy.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guganathan, L., Ramasamy, R., Sathishkumar, K. et al. Critical assessment of a Ce-doped SnO2 loaded on PPSAC composite photocatalyst on improved photocatalytic activity under visible light. Ionics 30, 2915–2926 (2024). https://doi.org/10.1007/s11581-024-05461-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05461-0

Keywords

Navigation