Skip to main content
Log in

Study on the lithium dendrite puncturing resistance of nonwoven separators

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The occurrence of an internal short circuit caused by lithium dendrite puncturing the separators is a critical safety issue for lithium batteries. While the investigation of dendrite puncturing resistance of commercial polyolefin separators is well-established, nonwoven separators have received fewer relevant studies. Therefore, we assembled lithium-symmetric cells, lithium-sulfur batteries, and lithium-lithium iron phosphate batteries using three commercial nonwoven separators and a homemade micro-fibrillated cellulose nonwoven separator to verify the ability of the nonwoven separator to resist lithium dendrite penetration. The results reveal that even under low current densities, all four types of nonwoven separators are susceptible to dendrite puncturing, leading to both hard short circuits with significant voltage drops, as well as soft short circuits with charging currents or voltage fluctuations. Moreover, the impedance of lithium-symmetric cells is significantly reduced after short circuit, while the charge transfer resistance of lithium-sulfur batteries increases substantially after short circuit. Our findings provide valuable insights for the development of nonwoven separators for use in lithium metal batteries, highlighting the need for further reduction in pore size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Xie J, Lu YC (2020) A retrospective on lithium-ion batteries. Nat Commun 11:2499. https://doi.org/10.1038/s41467-020-16259-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arora P, Zhang ZM (2004) Battery separators. Chem Rev 104:4419–4462. https://doi.org/10.1021/cr020738u

    Article  CAS  PubMed  Google Scholar 

  3. Lin XK, Khosravinia K, Hu XS, Li J, Lu W (2021) Lithium plating mechanism, detection, and mitigation in lithium-ion batteries. Prog Energy Combust Sci 87. https://doi.org/10.1016/j.pecs.2021.100953

  4. Hogrefe C, Waldmann T, Hölzle M, Wohlfahrt-Mehrens M (2023) Direct observation of internal short circuits by lithium dendrites in cross-sectional lithium-ion in situ full cells. J. Power Sources 556. https://doi.org/10.1016/j.jpowsour.2022.232391

  5. Yasin G, Arif M, Mehtab T, Lu X, Yu DL, Muhammad N, Nazir MT, Song HH (2020) Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Storage Mater 25:644–678. https://doi.org/10.1016/j.ensm.2019.09.020

    Article  Google Scholar 

  6. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364. https://doi.org/10.1016/j.jpowsour.2006.10.065

    Article  CAS  Google Scholar 

  7. Lu DP, Shao YY, Lozano T, Bennett WD, Graff GL, Polzin B, Zhang JG, Engelhard MH, Saenz NT, Henderson WA, Bhattacharya P, Liu J, Xiao J (2015) Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv Energy Mater 5. https://doi.org/10.1002/aenm.201400993

  8. Jiao SH, Zheng JM, Li QY, Li X, Engelhard MH, Cao RG, Zhang JG, Xu W (2018) Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries. Joule 2:110–124. https://doi.org/10.1016/j.joule.2017.10.007

    Article  CAS  Google Scholar 

  9. An H, Roh Y, Jo Y, Lee H, Lim M, Lee M, Lee YM, Lee H (2022) Separator dependency on cycling stability of lithium metal batteries under practical conditions. Energy Environ Mater. https://doi.org/10.1002/eem2.12397

    Article  Google Scholar 

  10. Bai P, Li J, Brushett FR, Bazant MZ (2016) Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci 9:3221–9. https://doi.org/10.1039/c6ee01674j

    Article  CAS  Google Scholar 

  11. Bai P, Guo J, Wang M, Kushima A, Su L, Li J, Brushett FR, Bazant MZ (2018) Interactions between lithium growths and nanoporous ceramic separators. Joule 2:2434–49. https://doi.org/10.1016/j.joule.2018.08.018

    Article  CAS  Google Scholar 

  12. Aguesse F, Manalastas W, Buannic L, Lopez Del Amo JM, Singh G, Llordes A, Kilner J (2017) Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl Mater Interfaces 9:3808–3816. https://doi.org/10.1021/acsami.6b13925

    Article  CAS  PubMed  Google Scholar 

  13. Ping W, Wang C, Lin Z, Hitz E, Yang C, Wang H, Hu L (2020) Reversible short-circuit behaviors in garnet-based solid-state batteries. Adv Energy Mater 10. https://doi.org/10.1002/aenm.202000702

  14. Sun H, Liu Q, Chen J, Li Y, Ye H, Zhao J, Geng L, Dai Q, Yang T, Li H, Wang Z, Zhang L, Tang Y, Huang J (2021) In situ visualization of lithium penetration through solid electrolyte and dead lithium dynamics in solid-state lithium metal batteries. ACS Nano. https://doi.org/10.1021/acsnano.1c04864

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu H, Cheng X-B, Huang J-Q, Yuan H, Lu Y, Yan C, Zhu G-L, Xu R, Zhao C-Z, Hou L-P, He C, Kaskel S, Zhang Q (2020) Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett 5:833–43. https://doi.org/10.1021/acsenergylett.9b02660

    Article  CAS  Google Scholar 

  16. Kritzer P, Cook JA (2007) Nonwovens as separators for alkaline batteries - an overview. J Electrochem Soc 154:A481–A494. https://doi.org/10.1149/1.2711064

    Article  CAS  Google Scholar 

  17. Wang Y, Luo JR, Chen L, Long J, Hu J, Meng L (2021) Effect of fibrillated fiber morphology on properties of paper-based separators for lithium-ion battery applications. J. Power Sources 482. https://doi.org/10.1016/j.jpowsour.2020.228899

  18. Hantel MM, Armstrong MJ, Darosa F, L’abee R (2017) Characterization of tortuosity in polyetherimide membranes based on Gurley and electrochemical impedance Spectroscopy. J Electrochem Soc 164:A334–A339. https://doi.org/10.1149/2.1071702jes

    Article  CAS  Google Scholar 

  19. He YT, Fan WD, Zhang YH, Wang ZH, Li XF, Liu ZG, Lu Z (2020) Understanding the relationships between morphology, solid electrolyte interphase composition, and coulombic efficiency of lithium metal. ACS Appl Mater Interfaces 12:22268–22277. https://doi.org/10.1021/acsami.0c00789

    Article  CAS  PubMed  Google Scholar 

  20. Wood KN, Kazyak E, Chadwick AF, Chen KH, Zhang JG, Thornton K, Dasgupta NP (2016) Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent Sci 2:790–801. https://doi.org/10.1021/acscentsci.6b00260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang DM, Hart N, Xiao MY, Lemmon JP (2021) Short circuit of symmetrical Li/Li cell in Li metal anode research. Acta Phys -Chim Sin 37. https://doi.org/10.3866/pku.Whxb202008013

  22. Li YJ, Zhang G, Chen B, Zhao W, Sha LT, Wang D, Yu J, Shi SQ (2022) Understanding the separator pore size inhibition effect on lithium dendrite <i>via</i> phase-field simulations. Chin Chem Lett 33:3287–3290. https://doi.org/10.1016/j.cclet.2022.03.065

    Article  CAS  Google Scholar 

  23. Kushima A, So KP, Su C, Bai P, Kuriyama N, Maebashi T, Fujiwara Y, Bazant MZ, Li J (2017) Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32:271–279. https://doi.org/10.1016/j.nanoen.2016.12.001

    Article  CAS  Google Scholar 

  24. Li Y, Long J, Liang Y, Hu J (2023) Lithium dendrites puncturing separator induced galvanostatic charge/discharge test problem in Li-symmetric cells. Ionics. https://doi.org/10.1007/s11581-023-05223-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rosso M, Brissot C, Teyssot A, Dollé M, Sannier L, Tarascon J-M, Bouchet R, Lascaud S (2006) Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta 51:5334–40. https://doi.org/10.1016/j.electacta.2006.02.004

    Article  CAS  Google Scholar 

  26. Lu Y, Tu Z, Archer LA (2014) Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater 13:961–969. https://doi.org/10.1038/nmat4041

    Article  CAS  PubMed  Google Scholar 

  27. Lu Y, Zhao C-Z, Yuan H, Cheng X-B, Huang J-Q, Zhang Q (2021) Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies. Adv Funct Mater 31. https://doi.org/10.1002/adfm.202009925

  28. Li Y, Zhang G, Chen B, Zhao W, Sha L, Wang D, Yu J, Shi S (2022) Understanding the separator pore size inhibition effect on lithium dendrite via phase-field simulations. Chin Chem Lett 33:3287–90. https://doi.org/10.1016/j.cclet.2022.03.065

    Article  CAS  Google Scholar 

  29. Canas NA, Hirose K, Pascucci B, Wagner N, Friedrich KA, Hiesgen R (2013) Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochim Acta 97:42–51. https://doi.org/10.1016/j.electacta.2013.02.101

    Article  CAS  Google Scholar 

  30. Deng Z, Zhang Z, Lai Y, Liu J, Li J, Liu Y (2013) Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J Electrochem Soc 160:A553–A8. https://doi.org/10.1149/2.026304jes

    Article  CAS  Google Scholar 

  31. Drvarič Talian S, Moškon J, Dominko R, Gaberšček M (2021) The pitfalls and opportunities of impedance spectroscopy of lithium sulfur batteries. Mater Interfaces, Adv. https://doi.org/10.1002/admi.202101116

    Book  Google Scholar 

  32. Waluś S, Barchasz C, Bouchet R, Alloin F (2020) Electrochemical impedance spectroscopy study of lithium–sulfur batteries: useful technique to reveal the Li/S electrochemical mechanism. Electrochim Acta 359. https://doi.org/10.1016/j.electacta.2020.136944

  33. Drvarič Talian S, Kapun G, Moškon J, Vizintin A, Randon-Vitanova A, Dominko R, Gaberšček M (2019) Which process limits the operation of a Li–S system? Chem Mater 31:9012–23. https://doi.org/10.1021/acs.chemmater.9b03255

    Article  CAS  Google Scholar 

  34. Gaberscek M, Moskon J, Erjavec B, Dominko R, Jamnik J (2008) The importance of interphase contacts in Li ion electrodes: the meaning of the high-frequency impedance arc. Electrochem Solid-State Lett 11:A170–A174. https://doi.org/10.1149/1.2964220

    Article  CAS  Google Scholar 

  35. Atebamba JM, Moskon J, Pejovnik S, Gaberscek M (2010) On the interpretation of measured impedance spectra of insertion cathodes for lithium-ion batteries. J Electrochem Soc 157:A1218–A1228. https://doi.org/10.1149/1.3489353

    Article  CAS  Google Scholar 

  36. Zhang T, Yang Z, Wang L, Zhao X, Zhuang QC (2019) Electrochemical properties of olivine-type LiFePO4/C cathode material for lithium ion batteries. Int J Electrochem Sci 13:8322–37. https://doi.org/10.20964/2018.09.30

    Article  CAS  Google Scholar 

  37. Zhuang QC, Yang Z, Zhang L, Cui YH (2020) Research progress on diagnosis of electrochemical impedance spectroscopy in lithium ion batteries. Prog Chem 32:761–791. https://doi.org/10.7536/pc191116

    Article  CAS  Google Scholar 

  38. Zhu JD, Yanilmaz M, Fu K, Chen C, Lu Y, Ge YQ, Kim D, Zhang XW (2016) Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries. J Membr Sci 504:89–96. https://doi.org/10.1016/j.memsci.2016.01.020

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (2022ZYGXZR112).

Author information

Authors and Affiliations

Authors

Contributions

Yao Li: Data collection, analysis and processing; Writing—Original Draft.

Jin Long: Writing—Review & Editing, Supervision.

Zhiyuan Xiong: Writing—Review & Editing, Supervision.

Yun Liang: Supervision.

Jian Hu: Supervision.

Corresponding authors

Correspondence to Jin Long or Zhiyuan Xiong.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9675 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Long, J., Xiong, Z. et al. Study on the lithium dendrite puncturing resistance of nonwoven separators. Ionics 30, 2105–2117 (2024). https://doi.org/10.1007/s11581-024-05435-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05435-2

Keywords

Navigation