Skip to main content
Log in

Beneficial effect of oxygen-ion conductor infiltration on the electrocatalytic properties of a heavily strontium-doped lanthanum nickelate Ruddlesden-Popper SOFC cathode

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The microstructure and electrocatalytic activity for oxygen reduction reaction of La1.2Sr0.8NiO4-δ electrodes were examined as a function of electrode thickness. The length of catalytically active region and optimal thickness of La1.2Sr0.8NiO4-δ electrode at 800 °C were gauged to be about 2 and 10 μm, respectively. Varying amounts of Ce0.8Sm0.2O1.9 were infiltrated into the electrodes with the optimal thickness. The phase structure, microstructure and electrocatalytic properties of the infiltrated electrodes were investigated with respect to infiltrate loading and the history of cathodic polarization under different conditions. It was demonstrated that infiltrating an appropriate amount of Ce0.8Sm0.2O1.9 into the electrode helped to improve the electrode performance, not only enhancing the electrocatalytic activity but also alleviating the degradation of the electrode property after experiencing cathodic polarization. The mechanisms underneath the beneficial effect were explained in relation to the microstructure of the infiltrated electrodes. The electrode infiltrated with 12 vol% Ce0.8Sm0.2O1.9 showed a low polarization resistance of 0.049 Ω·cm2 at 800 °C, while the increment of the polarization resistance of the infiltrated electrode after experiencing cathodic polarization was nearly half that of the pristine electrode after being likewise polarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data and materials are available on request.

References

  1. Ding PP, Li WL, Zhao HW, Wu CC, Zhao L, Dong BH, Wang SM (2021) Review on Ruddlesden-Popper perovskites as cathode for solid oxide fuel cells. J Phys Mater 4:022002

    Article  CAS  Google Scholar 

  2. Tarutin AP, Lyagaeva JG, Medvedev DA, Bi L, Yaremchenko AA (2021) Recent advances in layered Ln2NiO4+δ nickelates: fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells. J Mater Chem A 9:154–195

    Article  CAS  Google Scholar 

  3. Morales-Zapata MA, Larrea A, Laguna-Bercero MA (2023) Lanthanide nickelates for their application on Solid Oxide Cells. Electrochim Acta 444:141970

    Article  CAS  Google Scholar 

  4. Tang JP, Dass RI, Manthiram A (2000) Comparison of the crystal chemistry and electrical properties of La2-xAxNiO4 (A=Ca, Sr, and Ba). Mater Res Bull 35:411–424

    Article  CAS  Google Scholar 

  5. Minervini L, Grimes RW, Kilner JA, Sickafus KE (2000) Oxygen migration in La2NiO4+δ. J Mater Chem 10:2349–2354

    Article  CAS  Google Scholar 

  6. Boehm E, Bassat JM, Steil MC, Dordor P, Mauvy F, Grenier JC (2003) Oxygen transport properties of La2Ni1-xCuxO4+δ mixed conducting oxides. Solid State Sci 5:973–981

    Article  CAS  Google Scholar 

  7. Boehm E, Bassat JM, Dordor P, Mauvy F, Grenier JC, Stevens P (2005) Oxygen diffusion and transport properties in non-stoichiometric Ln2-xNiO4+δ oxides. Solid State Ionics 176:2717–2725

    Article  CAS  Google Scholar 

  8. Tietz F (1999) Thermal expansion of SOFC materials. Ionics 5:129–139

    Article  CAS  Google Scholar 

  9. Nakamura T, Yashiro K, Sato K, Mizusaki J (2009) Oxygen nonstoichiometry and defect equilibrium in La2-xSrxNiO4+δ. Solid State Ionics 180:368–376

    Article  CAS  Google Scholar 

  10. Song J, Ning D, Boukamp B, Bassat JM, Bouwmeester HJM (2020) Structure, electrical conductivity and oxygen transport properties of Ruddlesden-Popper phases Lnn+1NinO3n+1 (Ln=La, Pr and Nd; n=1, 2 and 3). J Mater Chem A 8:22206–22221

    Article  CAS  Google Scholar 

  11. Zhao K, Wang YP, Chen M, Xu Q, Kim BH, Huang DP (2014) Electrochemical evaluation of La2NiO4+δ as a cathode material for intermediate temperature solid oxide fuel cells. Int J Hydrogen Energ 39:7120–7130

    Article  CAS  Google Scholar 

  12. Pan ZH, Liu QL, Lyu RZ, Li P, Chan SH (2018) Effect of La0.6Sr0.4Co0.2Fe0.8O3-δ air electrode-electrolyte interface on the short-term stability under high-current electrolysis in solid oxide electrolyzer cells. J Power Sources 378:571–578

    Article  CAS  Google Scholar 

  13. Hildenbrand N, Nammensma P, Blank DHA, Bouwmeester HJM, Boukamp BA (2013) Influence of configuration and microstructure on performance of La2NiO4+δ intermediate-temperature solid oxide fuel cells cathodes. J Power Sources 238:442–453

    Article  CAS  Google Scholar 

  14. Read MSD, Islam MS, Watson GW, Hancock FE (2001) Surface structures and defect properties of pure and doped La2NiO4. J Mater Chem 11:2597–2602

    Article  CAS  Google Scholar 

  15. Heaney PJ, Mehta A, Sarosi G, Lamberti VE, Navrotsky A (1998) Structural effect of Sr substitution in La2-xSrxNiO4+δ. Phys Rev B 57:10370–10378

    Article  CAS  Google Scholar 

  16. Millburn JE, Green MA, Neumann DA, Rosseinsky MJ (1999) Evolution of the structure of the K2NiF4 phases La2-xSrxNiO4+δ with oxidation state: octahedral distortion and phase separation (0.2≤x≤1.0). J Solid State Chem 145:401–420

    Article  CAS  Google Scholar 

  17. Aguadero A, Escudero MJ, Pérez M, Alonso JA, Pomjakushin V, Daza L (2006) Effect of Sr content on the crystal structure and electrical properties of the system La2-xSrxNiO4+δ (0≤x≤1). Dalton Trans 36:4377–4383

    Article  Google Scholar 

  18. Wang YP, Xu Q, Huang DP, Zhao K, Chen M, Kim BH (2016) Evaluation of La1.8Sr0.2NiO4+δ as cathode for intermediate temperature solid oxide fuel cells. Int J Hydrogen Energ 41:6476–6485

    Article  CAS  Google Scholar 

  19. Inprasit T, Limthongkul P, Wongkasemjit S (2010) Sol–gel and solid-state synthesis and property study of La2-xSrxNiO4 (x ≤0.8). J Electrochem Soc 157:B1726–B1730

    Article  CAS  Google Scholar 

  20. Inprasit T, Wongkasemjit S, Skinner SJ, Burriel M, Limthongkul P (2015) Effect of Sr substituted La2-xSrxNiO4+δ (x=0, 0.2, 0.4, 0.6, and 0.8) on oxygen stoichiometry and oxygen transport properties. RSC Adv 5:2486–2492

    Article  CAS  Google Scholar 

  21. Wang YP, Xu Q, Huang DP, Zhao K, Chen M, Kim BH (2017) Survey on electrochemical properties of La2-xSrxNiO4±δ (x=0.2, 0.8) cathodes related with structural stability under cathodic polarization conditions. Int J Hydrogen Energ 42:6290–6302

    Article  CAS  Google Scholar 

  22. Yang SJ, Wen YB, Zhang JC, Lu Y, Ye XF, Wen ZY (2018) Electrochemical performance and stability of cobalt-free Ln1.2Sr0.8NiO4 (Ln=La and Pr) air electrodes for proton-conducting reversible solid oxide cells. Electrochim Acta 267:269–277

    Article  CAS  Google Scholar 

  23. Mauvy F, Lalanne C, Bassat JM, Grenier JC, Zhao H, Dordor P, Stevens P (2005) Oxygen reduction on porous Ln2NiO4+δ electrodes. J Eur Ceram Soc 25:2669–2672

    Article  CAS  Google Scholar 

  24. Escudero MJ, Aguadero A, Alonso JA, Daza L (2007) A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy. J Electroanal Chem 611:107–116

    Article  CAS  Google Scholar 

  25. Adler SB, Lane JA, Steele BCH (1996) Electrode kinetics of porous mixed-conducting oxygen electrodes. J Electrochem Soc 143:3554–3564

    Article  CAS  Google Scholar 

  26. Adler SB (1998) Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3-δ electrodes. Solid State Ionics 111:125–134

    Article  CAS  Google Scholar 

  27. Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104:4791–4843

    Article  CAS  PubMed  Google Scholar 

  28. Yokokawa H, Tu HY, Iwanschitz B, Mai A (2008) Fundamental mechanisms limiting solid oxide fuel cell durability. J Power Sources 182:400–412

    Article  CAS  Google Scholar 

  29. Wang HQ, Yakal-Kremski KJ, Yeh T, Rupp GM, Limbeck A, Fleig J, Barnett SA (2016) Mechanisms of performance degradation of (La, Sr)(Co, Fe)O3-δ solid oxide fuel cell cathodes. J Electrochem Soc 163:F581–F585

    Article  CAS  Google Scholar 

  30. Murray EP, Barnett SA (2001) (La, Sr)MnO3-(Ce, Gd)O2–x composite cathodes for solid state fuel cells. Solid State Ionics 143:265–273

    Article  Google Scholar 

  31. Murray EP, Sever MJ, Barnett SA (2002) Electrochemical performance of (La, Sr)(Co, Fe)O3-(Ce, Gd)O3 composite cathodes. Solid State Ionics 148:27–34

    Article  Google Scholar 

  32. Jiang SP, Wang W (2005) Fabrication and performance of GDC-impregnated (La, Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells. J Electrochem Soc 152:A1398–A1408

    Article  CAS  Google Scholar 

  33. Nie LF, Liu MF, Zhang YJ, Liu ML (2010) La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells. J Power Sources 195:4704–4708

    Article  CAS  Google Scholar 

  34. Liu MF, Ding D, Blinn K, Li XX, Nie LF, Liu ML (2012) Enhanced performance of LSCF cathode through surface modification. Int J Hydrogen Energ 37:8613–8620

    Article  CAS  Google Scholar 

  35. Molero-Sánchez B, Addo P, Buyukaksoy A, Birss V (2017) Performance enhancement of La0.3Ca0.7Fe0.7Cr0.3O3-δ air electrodes by infiltration methods. J Electrochem Soc 164:F3123–F3130

    Article  Google Scholar 

  36. Pérez-Coll D, Aguadero A, Escudero MJ, Núñez P, Daza L (2008) Optimization of the interface polarization of the La2NiO4-based cathode working with the Ce1-xSmxO2-δ electrolyte system. J Power Sources 178:151–162

    Article  Google Scholar 

  37. Gong MG, Lu LH, Zhang H, Gao LR, Guo YB, Jin J (2009) Properties and performance of La1.6Sr0.4NiO4+δ-Ce0.8Sm0.2O1.9 composite cathodes for intermediate temperature solid oxide fuel cells. Mater Res Bull 44:1630–1634

    Article  CAS  Google Scholar 

  38. Li PZ, Wang ZH, Huang XQ, Zhu L, Cao ZQ, Zhang YH, Wei B, Zhu XB, Lu Z (2017) Enhanced electrochemical performance of co-synthesized La2NiO4+δ-Ce0.55La0.45O2-δ composite cathode for IT-SOFCs. J Alloy Compd 705:105–111

    Article  CAS  Google Scholar 

  39. Li PZ, Yang W, Tian CJ, Zhao WY, Lu Z, Xie ZP, Wang CA (2021) Electrochemical performance of La2NiO4+δ-Ce0.55La0.45O2-δ as a promising bifunctional oxygen electrode for reversible solid oxide cells. J Adv Ceram 10:328–337

    Article  CAS  Google Scholar 

  40. Wang L, Xie XB, Xu Q, Huang DP, Chen M, Zhao K, Chen DC, Zhang F (2022) Improved electrocatalytic properties of strontium-doped lanthanum nickelate cathodes by infiltrating samarium-doped ceria. Ionics 28:1873–1885

    Article  CAS  Google Scholar 

  41. Ding D, Li XX, Lai SYX, Gerdes K, Liu ML (2014) Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ Sci 7:552–575

    Article  CAS  Google Scholar 

  42. Connor PA, Yue XL, Savaniu CD, Price R, Triantafyllou G, Cassidy M, Kerherve G, Payne DJ, Maher RC, Cohen LF, Tomov RI, Glowacki BA, Kumar RV, Irvine JTS (2018) Tailoring SOFC electrode microstructures for improved performance. Adv Energy Mater 8:1800120

    Article  Google Scholar 

  43. Xu Q, Huang DP, Zhao K, Chen W, Chen M, Kim BK (2011) Powder morphology modification and sinterability improvement of Ce0.8Sm0.2O1.9 derived from solution combustion process. Ceram Inter 37:913–920

    Article  CAS  Google Scholar 

  44. Wan TH, Saccoccio M, Chen C, Ciucci F (2015) Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim Acta 184:483–499

    Article  CAS  Google Scholar 

  45. Boukamp BA, Rolle A (2017) Analysis and application of distribution of relaxation times in solid state ionics. Solid State Ionics 302:12–18

    Article  CAS  Google Scholar 

  46. Zhang ZX, Xie XB, Xu Q, Huang DP, Chen M, Zhao K, Chen DC, Zhang F (2022) Alleviated surface calcium segregation and improved electrocatalytic properties of La0.3Ca0.7Fe0.7Cr0.3O3-δ cathode: a demonstration of A-site deficiency effect. J Alloy Compd 924:166615

    Article  CAS  Google Scholar 

  47. Cetin D, Poizeau S, Pietras J, Gopalan S (2017) Decomposition of La2NiO4in Sm0.2Ce0.8O2-La2NiO4 composites for solid oxide fuel cell applications. Solid State Ionics 300:91–96

    Article  CAS  Google Scholar 

  48. Hoomans BPB, Kuipers JAM, Briels WJ, Van Swaaij WPM (1996) Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach. Chem Eng Sci 51:99–118

    Article  CAS  Google Scholar 

  49. Yang XH, Lu TJ, Kim T (2013) A simplistic model for the tortuosity in two-phase close-celled porous media. J Phys D Appl Phys 46:125305–125308

    Article  Google Scholar 

  50. Li JG, Ikegami T, Mori T (2004) Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and grain growth behaviors. Acta Mater 52:2221–2228

    Article  CAS  Google Scholar 

  51. Wang YP, Xu Q, Huang DP, Zhao K, Chen M, Kim BH (2018) Optimization on the electrochemical properties of La2NiO4+δ cathodes by tuning the cathode thickness. Int J Hydrogen Energ 43:4482–4491

    Article  CAS  Google Scholar 

  52. Araújo AJM, Loureiro FJA, Holz LIV, Grilo JPF, Macedo DA, Paskocimas CA, Fagg DP (2021) Composite of calcium cobaltite with praseodymium-doped ceria: a promising new oxygen electrode for solid oxide cells. Int J Hydrogen Energ 46:28258–28269

    Article  Google Scholar 

  53. Druce J, Téllez H, Ishihara T, Kilner JA (2015) Oxygen exchange and transport in dual phase ceramic composite electrodes. Faraday Discuss 182:271–288

    Article  CAS  PubMed  Google Scholar 

  54. Kuklja MM, Kotomin EA, Merkle R, Mastrikov YA, Maier J (2013) Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys Chem Chem Phys 15:5443–5471

    Article  CAS  PubMed  Google Scholar 

  55. Saher S, Naqash S, Boukamp BA, Hu B, Xia CR, Bouwmeeste HJM (2017) Influence of ionic conductivity of the nano-particulate coating phase on oxygen surface exchange of La0.58Sr0.4Co0.2Fe0.8O3-δ. J Mater Chem A 5:4991–4999

    Article  CAS  Google Scholar 

  56. Cao YP, Gadre MJ, Ngo AT, Adler SB, Morgan DD (2019) Factors controlling surface oxygen exchange in oxides. Nat Commun 10:1346

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lee WY, Han JW, Chen Y, Cai Z, Yildiz B (2013) Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J Am Chem Soc 135:7909–7925

    Article  CAS  PubMed  Google Scholar 

  58. Tsvetkov N, Lu QY, Sun LX, Crumlin EJ, Yildiz B (2016) Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nat Mater 15:1010–1016

    Article  CAS  PubMed  Google Scholar 

  59. Kim DH, Bliem R, Hess F, Gallet J, Yildiz B (2020) Electrochemical polarization dependence of the elastic and electrostatic driving forces to aliovalent dopant segregation on LaMnO3. J Am Chem Soc 142:3548–3563

    Article  CAS  PubMed  Google Scholar 

  60. Pérez-Coll D, Aguadero A, Escudero MJ, Daza L (2009) Effect of DC current polarization on the electrochemical behaviour of La2NiO4+δ and La3Ni2O7+δ-based systems. J Power Sources 192:2–13

    Article  Google Scholar 

  61. Druce J, Téllez H, Burriel M, Sharp MD, Fawcett LJ, Cook SN, McPhail DS, Ishihara T, Brongersma HH, Kilner JA (2014) Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials. Energy Environ Sci 7:3593–3599

    Article  CAS  Google Scholar 

  62. Opitz AK, Rameshan C, Kubicek M, Rupp GM, Nenning A, Götsch T, Blume R, Hävecker M, Knop-Gericke A, Rupprechter G, Klötzer B, Fleig J (2018) The chemical evolution of the La0.6Sr0.4CoO3-δ surface under SOFC operating conditions and its implications for electrochemical oxygen exchange activity. Top Catal 61:2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yahiro H, Ohuchi T, Eguchi K, Arai H (1988) Electrical properties and microstructure in the system ceria-alkaline earth oxide. J Mater Sci 23:1036–1041

    Article  CAS  Google Scholar 

  64. Zhang YB, Nicholas JD (2021) Evidence that surface-segregated Sr phases can be removed in LSCF via ceria pre-infiltration, are less apt to form in SSC. J Electrochem Soc 168:024522

    Article  CAS  Google Scholar 

  65. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Cryst A32:751–767

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 52372182, 51872047 and 51572204) and Guangdong Basic and Applied Research Foundation (2022A1515012001).

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the manuscript made respective contributions to the conception and design of the work, the acquisition, analysis and interpretation of data, and the writing of the manuscript. All authors read and approved the final manuscript. The specified contributions of the authors are listed below. Han Shu: Methodology, Investigation, Software, Validation, Data curation, Formal analysis, Writing-original draft, Visualization. Yong-Qi Lei: Software, Investigation, Validation, Formal analysis, Writing-original draft, Visualization. Qing Xu: Conceptualization, Methodology, Formal analysis, Writing-original draft, Writing-review & editing, Project administration, Funding acquisition, Validation, Supervision. Duan-Ping Huang: Methodology, Formal analysis, Investigation. Min Chen: Conceptualization, Writing-review & editing, Project administration Funding acquisition. Kai Zhao: Methodology, Writing-review & editing, Funding acquisition. Dong-Chu Chen: Resources, Supervision. Feng Zhang: Methodology, Data curation, Resources.

Corresponding authors

Correspondence to Qing Xu or Min Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 30651 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Lei, YQ., Xu, Q. et al. Beneficial effect of oxygen-ion conductor infiltration on the electrocatalytic properties of a heavily strontium-doped lanthanum nickelate Ruddlesden-Popper SOFC cathode. Ionics 30, 2177–2189 (2024). https://doi.org/10.1007/s11581-024-05431-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05431-6

Keywords

Navigation