Skip to main content
Log in

Electrochemical study to explore the capacitance properties of the TiO2/solution interface

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, we employed classic electrochemical techniques including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) to perform electrochemical characterization on atomic-level single-crystal TiO2 electrodes and extract capacitive and resistive properties of single-crystal TiO2 electrode/solution interface in KCl and KCl/K3PO4 at various pH levels. The lattice structure and crystal appearance were characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy to facilitate the in-depth exploration of heterogeneous reaction dynamics and theory. Furthermore, this study aimed to verify and improve the theory and application of capacitance at the single-crystal TiO2 electrode/solution interface. The electrochemical measurements indicate that, in the same pH, the presence of PO43− significantly increases the total capacitance (CT), outer capacitance (CO), electrical double-layer capacitance (Cdl), and diffusion layer capacitance (Cdiff) at single-crystal TiO2 electrode/solution interface. This enhancement is attributed to the direct interaction between PO43− and the single-crystal TiO2 electrode surface, leading to the specific adsorption of PO43− on the electrode surface, revealing higher current and stronger electrochemical activity in the interaction between TiO2 and PO43−. Additionally, our XPS results indicate the adsorption of PO43− on the single-crystal TiO2 electrode surface. The interaction of PO43− with the TiO2 surface demonstrates increased hydrophilicity and enhanced adsorption capacity through mechanisms such as ligand exchange or cation bridging, thereby augmenting the Cdl at the single-crystal TiO2 electrode/solution interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jung S, McCrory CCL, Ferrer IM, Peters JC, Jaramillo TF (2016) Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J Mater Chem A 4(8):3068–3076

    Article  CAS  Google Scholar 

  2. Ardizzone S, Fregonara G, Trasatti S (1990) “Inner” and “outer” active surface of RuO2 electrodes. Electrochim Acta 35(1):263–267

    Article  CAS  Google Scholar 

  3. Eftekhari A (2017) From pseudocapacitive redox to intermediary adsorption in oxygen evolution reaction. Mater Today Chem 4:117–132

    Article  Google Scholar 

  4. Li G, Divinagracia MF, Labata MF, Ocon JD, Abel Chuang P (2019) Electrolyte-depended oxygen evolution reactions in alkaline media: electrical double layer and interfacial interactions. ACS Appl Mater Interfaces 11(37):33748–33758

    Article  CAS  PubMed  Google Scholar 

  5. Zhang R, Pearce PE, Duan Y, Dubouis N, Marchandier T, Grimaud A (2019) Importance of water structure and catalyst–electrolyte interface on the design of water splitting catalysts. Chem Mater 31(20):8248–8259

    Article  CAS  Google Scholar 

  6. Li J, Chen C, Zhao J, Zhu H, Orthman J (2002) Photodegradation of dye pollutants on TiO2 nanoparticles dispersed in silicate under UV–VIS irradiation. Appl Catal B Environ 37:331–338

    Article  CAS  Google Scholar 

  7. Wen S, Zhao J, Sheng G, Fu J, Peng P (2003) Photocatalytic reactions of pyrene at TiO2/water interfaces. Chemosphere 50:111–119

    Article  CAS  PubMed  Google Scholar 

  8. Meifen W, Yuning J, Guohua Z, Mingfang L, Dongming L (2010) Electrosorption-promoted photodegradation of opaque wastewater on a novel TiO2/carbon aerogel electrode. Environ Sci Technol 44:1780–1785

    Article  Google Scholar 

  9. Zhang A, Long L, Liu C, Li W, Yu H (2014) Electrochemical degradation of refractory pollutants using TiO2 single crystals exposed by high-energy 001 facets. Water Res 66:273–282

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Wu X, Liu S, Li Y, Fan J, Lv K (2020) Effects of fluorine on photocatalysis. Chin J Catal 41(10):1451–1467

    Article  CAS  Google Scholar 

  11. Huang z, Yang Y, Mu J, Li G, Han J, Ren P, Zhang J, Luo N, Han K-l, Wang F, (2023) Controlling the reactions of free radicals with metal-radical interaction. Chin J Catal 45:120–131

    Article  Google Scholar 

  12. Yin R, Ji X, Zhang L, Lu S, Cao W, Fan Q (2007) Multilayer nano Ti/TiO[sub 2]–Pt electrode for coal-hydrogen production. Journal of The Electrochemical Society 154(12)

  13. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  CAS  PubMed  Google Scholar 

  14. Anantharaj S, Ede SR, Karthick K, Sankar SS, Sangeetha K, Karthik P, Kundu S (2018) Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ Sci 11:744–771

    Article  CAS  Google Scholar 

  15. Shi H, Zhang T, Wang H, Wang X, He M (2011) Photocatalytic conversion of naphthalene to α-naphthol using nanometer-sized TiO2. Chin J Catal 32(1–2):46–50

    Article  CAS  Google Scholar 

  16. Pu X, Zhao D, Fu C, Chen Z, Cao S, Wang C, Cao Y (2021) Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew Chem Int Ed Engl 60(39):21310–21318

    Article  CAS  PubMed  Google Scholar 

  17. Nong HN, Falling LJ, Bergmann A, Klingenhof M, Tran HP, Spori C, Mom R, Timoshenko J, Zichittella G, Knop-Gericke A, Piccinin S, Perez-Ramirez J, Cuenya BR, Schlogl R, Strasser P, Teschner D, Jones TE (2020) Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587(7834):408–413

    Article  CAS  PubMed  Google Scholar 

  18. Ji H, Zhao X, Qiao Z, Jung J, Zhu Y, Lu Y, Zhang L, MacDonald AH, Ruoff RS (2014) Capacitance of carbon-based electrical double-layer capacitors. Nat Commun 5(1)

  19. Yang H, Hung S, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang H, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen H, Li C, Zhang T, Liu B (2018) Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat Energy 3(2):140–147

    Article  CAS  Google Scholar 

  20. Horinek D, Netz RR (2007) Specific ion adsorption at hydrophobic solid surfaces. Phys Rev Lett 99(22):226104

    Article  PubMed  Google Scholar 

  21. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9(2):146–151

    Article  CAS  PubMed  Google Scholar 

  22. Liu G, Yang H, Pan J, Yang Y, Lu GQ, Cheng H (2014) Titanium dioxide crystals with tailored facets. Chem Rev 114(19):9559–9612

    Article  CAS  PubMed  Google Scholar 

  23. Liu S, Yu J, Jaroniec M (2011) Anatase TiO2 with dominant high-energy 001 facets: synthesis, properties, and applications. Chem Mater 23(18):4085–4093

    Article  CAS  Google Scholar 

  24. Borkovec M, Jönsson B, Koper GJM (2001) Ionization processes and proton binding in polyprotic systems: small molecules, proteins, interfaces, and polyelectrolytes. Surf Colloid Sci 16:99–339

    Article  Google Scholar 

  25. Trefalt G, Behrens SH, Borkovec M (2016) Charge regulation in the electrical double layer: ion adsorption and surface interactions. Langmuir 32(2):380–400

    Article  CAS  PubMed  Google Scholar 

  26. Hu Q, Weber C, Cheng HW, Renner FU, Valtiner M (2017) Anion layering and steric hydration repulsion on positively charged surfaces in aqueous electrolytes. ChemPhysChem 18(21):3056–3065

    Article  CAS  PubMed  Google Scholar 

  27. Bondarenko AS, Ragoisha GA (2005) Variable Mott-Schottky plots acquisition by potentiodynamic electrochemical impedance spectroscopy. J Solid State Electrochem 9(12):845–849

    Article  CAS  Google Scholar 

  28. Bao Y, Wang W, He B, Wang M, Yin Y, Liang L, Xu L, Xu G (2008) EIS analysis of hydrophobic and hydrophilic TiO2 film. Electrochim Acta 54(2):611–615

    Article  CAS  Google Scholar 

  29. Shimizu K, Lasia A, Boily JF (2012) Electrochemical impedance study of the hematite/water interface. Langmuir 28(20):7914–7920

    Article  CAS  PubMed  Google Scholar 

  30. Kong X, Zeng C, Wang X, Huang J, Li C, Fei J, Li J, Feng Q (2016) Ti-O-O coordination bond caused visible light photocatalytic property of layered titanium oxide. Sci Rep 6:29049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Korotin MA, Boukhvalov DW, Gavrilov NV, Kim SS, Cholakh SO, Kurmaev EZ (2017) Mixed substitution in P‐doped anatase TiO2 probed by XPS and DFT. Phys Status Solidi (b) 255(4)

  32. Li G, Anderson L, Chen Y, Pan M, Abel Chuang P-Y (2018) New insights into evaluating catalyst activity and stability for oxygen evolution reactions in alkaline media. Sustain Energy Fuels 2(1):237–251

    Article  CAS  Google Scholar 

Download references

Funding

The work was funded by the National Natural Science Fund of China (no. 52100187).

Author information

Authors and Affiliations

Authors

Contributions

H.Y. wrote the main manuscript text. H.Y. and J.L. completed revising and reviewing the paper. H.Y. and J.H. jointly completed the experimental. C.X. presented the main innovation of the text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chao Xiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7292 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Liu, J., Huang, J. et al. Electrochemical study to explore the capacitance properties of the TiO2/solution interface. Ionics 30, 2217–2228 (2024). https://doi.org/10.1007/s11581-024-05427-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05427-2

Keywords

Navigation