Skip to main content
Log in

A review on carbon material-metal oxide-conducting polymer and ionic liquid as electrode materials for energy storage in supercapacitors

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In recent years, supercapacitors have gained importance as electrochemical energy storage devices. Those are attracting a lot of attention because of their excellent properties, such as fast charge/discharge, excellent cycle stability, and high energy/power density, which are suitable for many applications. Further development and innovation of these devices depend on the production of suitable, inexpensive, environmentally friendly, and widely available materials for use as active materials in electrodes and electrolytes. Different materials (such as activated carbon, metal oxides, graphene, conducting polymers, and ionic liquids) have recently been used to fabricate powerful symmetric or asymmetric supercapacitor electrodes. This paper presents the advantages and disadvantages as well as the electrochemical parameters of different electrodes based on a detailed literature review. The focus is particularly on ionic liquids, which are used as electrode materials. Finally, the future development and perspectives of supercapacitors based on ionic liquids are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data and code availability

Not applicable.

References 

  1. Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  CAS  PubMed  Google Scholar 

  2. Mondal S, Rana U, Malik S (2017) Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor, j. Phys Chem C 121:7573–7583

    Article  CAS  Google Scholar 

  3. Wang H, Zhu C, Chao D, Yan Q, Fan H (2017) Nonaqueous hybrid lithium-ion and sodium-ion capacitors. J Adv Mater 29:1702093

    Article  Google Scholar 

  4. Li L, Zhang D, Deng J, Gou Y, Fang J, Cui H, Zhang C, Cao M (2021) Application of MXene-based materials in hybrid capacitors, Journal Sustainable. Energy Fuels 5:3278–3291

    CAS  Google Scholar 

  5. Yue L, Jia D, Tang J, Zhang A, Liu F, Chen T, Barrow C, Yang W, Liu J (2020) Improving the rate capability of ultrathin NiCo-LDH nanoflakes and FeOOH nanosheets on surface electrochemically modified graphite fibers for flexible asymmetric supercapacitors. J Colloid Interface Sci 560:237–246

    Article  CAS  PubMed  Google Scholar 

  6. Akinwolemiwa B, Wei C, Chen GZ (2017) Mechanisms and designs of asymmetrical electrochemical capacitors, j. Electrochim Acta 247:344–357

    Article  CAS  Google Scholar 

  7. Asghari A, Dalvand S, Miresmaeili MS, Khoramah F, Omidvar M, Kambarani M, Mohammadi N (2023) Reactive Red 198 as high-performance redox electrolyte additive for defective mesoporous carbon-based supercapacitor. Int J Hydrogen Energy 48:9776–9784

    Article  CAS  Google Scholar 

  8. Khoramjah F, Omidvar M, Miresmaieli MS, Dalvand S, Asghari A, Kambarani M, Mohammadi N (2023) Defective mesoporous carbon coupled with a redox additive electrolyte for high performance supercapacitor. J Diamond Relat Mater 132:109590

    Article  CAS  Google Scholar 

  9. Omidvar M, Dalvand S, Asghari A, Yazdanfar N, YousefiSadat H, Mohammadi N (2023) Fabrication of an efficient supercapacitor based on defective mesoporous carbon as electrode material utilizing Reactive Blue 15 as novel redox mediator for natural aqueous electrolyte. J Fuel 347:128472

    Article  CAS  Google Scholar 

  10. Dalvand S, Omidvar M, Asghari A, Mohammadi N, Yazdanfar N (2023) Designing and fabricating high-performance supercapacitor based on defective mesoporous carbon as electrode and Disperse Blue 6 as novel redox additive electrolyte. J Porous Mater. https://doi.org/10.1007/s10934-023-01483-7

    Article  Google Scholar 

  11. Wu X, Han Z, Zheng X, Yao S, Yang X, Zhai T (2017) Core-shell structured Co3O4@ NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties, j. Nanomater Energy 31:410–417

    Article  CAS  Google Scholar 

  12. Kiran SK, Shukla S, Struck A, Saxena S (2020) Surface enhanced 3D RGO hybrids and porous RGO nano-networks as high performance supercapacitor electrodes for integrated energy storage devices. Carbon 158:527–535

    Article  CAS  Google Scholar 

  13. Li X, Wu H, Elshahawy AM, Wang L, Pennycook SJ, Guan C (2018) Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. J Adv Funct Mater 28:1800036

    Article  Google Scholar 

  14. Eivazzadeh-Keihan R, Taheri-Ledari R, SaidiMehrabad M, Dalvand S, Sohrabi H, Maleki A, Mousavi-Khoshdel SM, EsmailShalan A (2021) Effective combination of rGO and CuO nanomaterials through poly(p-phenylenediamine) texture: utilizing it as an excellent supercapacitor, j. Energy Fuels 35:10869–10877

    Article  CAS  Google Scholar 

  15. Eivazzadeh-Keihan R, Taheri-Ledari R, Khosropour N, Dalvand S, Maleki A, Mousavi-Khoshdel SM, Sohrabi H (2020) Fe3O4/GO@ melamine-ZnO nanocomposite: a promising versatile tool for organic catalysis and electrical capacitance, j. Colloids Surf, A 587:124335

    Article  CAS  Google Scholar 

  16. Zhang D, Li L, Deng J, Guo S, Pang H, Lu J, Xia D, Ji X (2021) A new type of zinc ion hybrid supercapacitor based on 2D materials. J Nanoscale 13:11004–11016

    Article  CAS  Google Scholar 

  17. Rachiy BI, Nykoliuk MO, Budzulyak IM, Kachmar AI (2017) Ultrasonic modification of carbon materials for electrochemical capacitors. Nanoscale Res Lett 12(79). https://doi.org/10.1186/s11671-017-1842-1

  18. Zhang T, Kong L-B, Liu M-C, Dai Y-H, Yan K, Hu B, Luo Y-C, Kang L (2016) Design and preparation of MoO2/MoS2 as negative electrode materials for supercapacitors. Mater Des 112:88–96

    Article  CAS  Google Scholar 

  19. Liu Y, Cai X, Jiang J, Yan M, Shi W (2017) Nitrogen and carbon co-doped Ni-TiO2 spindles for high performance electrochemical capacitor electrodes. Appl Surf Sci 396:774–779

    Article  CAS  Google Scholar 

  20. Ouyang J (2018) Recent advances of intrinsically conductive polymers. Acta Phys Sin 34:1211–1220

    Article  CAS  Google Scholar 

  21. Hong Quan L, Thi U, Dieu Thuy P, Viet Nam N, Van Chi T, Xuan Duong N, Van Hoa (2023) Chitosan-derived carbon aerogel nanocomposite as an active electrode material for high-performance supercapacitors. J Sci: Advanced Materials and Devices. 8:100586

    Google Scholar 

  22. Qian J, Xu J, Kong Z, Zhang L, Wang Y (2023) Spindle-shaped MoS2/ MnNi bimetallic hydroxide derived from metal-organic frameworks as electrode materials for high performance supercapacitors. J Phys Chem Solids 179:111425

    Article  CAS  Google Scholar 

  23. Ma X, Wang S, Wang H, Ding J, Liu S, Huang Z, Sun W, Liu G, Wang L, Xu W (2022) Construction of high-performance asymmetric supercapacitor based on FeCo-LDH@C3N4 composite electrode material with penetrating structure. J Energy Storage 56:106034

    Article  Google Scholar 

  24. Nayak S, Kittur AA, Nayak S (2022) Biosynthesis of zinc oxide-cobalt oxide nanocomposite as electrode material and its performance evaluation for the sustainable hybrid supercapacitor energy storage devices. J Chem Physics Lett 806:140058

    Article  CAS  Google Scholar 

  25. Thakur S, Paul T, Maiti S, Kumar Chattopadhyay K (2021) All-inorganic CsPbBr 3 perovskite as potential electrode material for symmetric supercapacitor, j. Solid State Sci 122:106769

    Article  CAS  Google Scholar 

  26. Wang C, Liu Z, Wang Q, Guo J, Zhao Q, Lu Y (2021) MnO2@polypyrrole composite with hollow microsphere structure for electrode material of supercapacitors. J Electroanal Chem 901:115780

    Article  CAS  Google Scholar 

  27. Talluri B, Aparna ML, Sreenivasulu N, Bhattacharya SS, Thomas T (2021) High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as a hig h-performance supercapacitor electrode material. J Energy Storage 42:103004

    Article  Google Scholar 

  28. Suganya S, Balaji G, Vadivel S (2023) Hybridization of graphene into NiCo2S4 hybrid composites as electrode materials for high performance supercapacitors. J Chem Physics 573:112000

    CAS  Google Scholar 

  29. Sudhakar K, Rajeswaran P, Kamatchi T, Ambika S (2023) Facile one-pot synthesis of porous NiCoP@reduced graphene oxide composite as active electrode material for high energy density asymmetric supercapacitor. J Chem Physics Lett 826:140635

    Article  CAS  Google Scholar 

  30. Wang Y, Wang J, Wei D, Xu L (2023) Multicore-shell MnO2@Ppy@N-doped porous carbon nanofiber ternary composites as electrode materials for high-performance supercapacitors. J Colloid Interface Sci 648:925–939

    Article  CAS  PubMed  Google Scholar 

  31. Siva V, Murugan A, Shameem A, Thangarasu S, Kannan S, Raja A (2023) Gel combustion synthesized NiMoO4 anchored polymer nanocomposites as a flexible electrode material for solid state asymmetric supercapacitors. J Int J Hydrogen Energy 48:18856–18870

    Article  CAS  Google Scholar 

  32. Mustaqeem M, Naikoo GA, Yarmohammadi M, Pedram MZ, Pourfarz H, Dar RA, Taha SA, Israr UH, Yasir Bhat MD, Chen Y-F (2022) Rational design of metal oxide based electrode materials for high performance supercapacitors – a review. J Energy Storage 55:105419

    Article  Google Scholar 

  33. Pawar SA, Patil DS, Nandi DK, Islam MM, Sakurai T, Kim SH, Shin JC (2022) Cobalt-based metal oxide coated with ultrathin ALD-MoS2 as an electrode material for supercapacitors. J Chem Eng J 435:135066

    Article  CAS  Google Scholar 

  34. Kumar S, Weng P-H, Fu Y-P (2023) NiO/g-C3N4/PANI/Ni-metal-organic framework composite for high-energy supercapacitor electrodes. J Mater Today Chem 28:101385

    Article  CAS  Google Scholar 

  35. Korkmaz S, AfşinKariper I (2020) Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications. J Energy Storage 27:101038

    Article  Google Scholar 

  36. Thomas P, WeiLai C, Rafie M, Johan B (2019) Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. J Anal Appl Pyrol 140:54–85

    Article  CAS  Google Scholar 

  37. Tang C, Titirici M, Zhang Q (2017) A review of nanocarbons in energy electrocatalysis: multifunctional substrates and highly active sites. J Energy Chem 26:1077–1093

    Article  Google Scholar 

  38. Chen Z, Ye S, Evans SD, Ge Y, Zhu Z, Tu Y, Yang X (2018) Confined assembly of hollow carbon spheres in carbonaceous nanotube: a spheres-in-tube carbon nanostructure with hierarchical porosity for high-performance supercapacitor. Small 14:1704015

    Article  Google Scholar 

  39. Ouyang Y, Xia X, Ye H, Wang L, Jiao X, Lei W, Hao Q (2018) Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl Mater Interfaces 10:3549–3561

    Article  CAS  PubMed  Google Scholar 

  40. Zhang D, Li L, Gao Y, Wu Y, Deng J (2021) Carbon-based materials for a new type of zinc-ion capacitor. J ChemElectroChem 8:1541–1557

    Article  CAS  Google Scholar 

  41. Martins VL, Rennie AJR, Lesowiec J, Torresi RM, Halla PJ (2017) Using polymeric ionic liquids as an active binder in supercapacitors. J Electrochem Soc 164:A3253–A3258

    Article  CAS  Google Scholar 

  42. Maleki N, Safavi A, Tajabadi F (2006) High-performance carbon composite electrode based on an ionic liquid as a binder, Journal. Anal Chem 78:3820–3826

    Article  CAS  PubMed  Google Scholar 

  43. Grygiel K, Lee JS, Sakaushi K, Antonietti M, Yuan J (2015) Thiazolium poly(ionic liquid)s: synthesis and application as binder for lithium-ion batteries, Journal. ACS Macro Lett 4:1312–1316

    Article  CAS  PubMed  Google Scholar 

  44. Qu C, Zhang L, Meng W, Liang Z, Zhu B, Dang D, Dai S, Zhao B, Tabassum H, Gao S (2018) MOF-derived α-NiSnanorods on graphene as an electrode for high-energy-density supercapacitors. J Mater Chem A 6:4003–4012

    Article  CAS  Google Scholar 

  45. Zhang X, Wang J, Liu J, Wu J, Chen H, Bi H (2017) Design and preparation of a ternary composite of graphene oxide/carbon dots/polypyrrole for supercapacitor application:importance and unique role of carbon dots. Carbon 115:134–146

    Article  CAS  Google Scholar 

  46. Raza N, Kumar T, Singh V, Kim K-H (2021) Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material. Coord Chem Rev 430:213660

    Article  CAS  Google Scholar 

  47. Wang D-G, Liang Z, Gao S, Qu C, Zou R (2020) Metalorganic framework-based materials for hybrid supercapacitor application. Coord Chem Rev 404:213093

    Article  CAS  Google Scholar 

  48. Rajak R, Kumar R, Ansari SN, Saraf M, Mobin SM (2020) Recent highlights and future prospects on mixed-metal M.O.F.s as emerging supercapacitor candidates. Dalton Trans 49:11792–11818

    Article  CAS  PubMed  Google Scholar 

  49. Joseph A, Perikkathra S, Thomas T (2023) Novel 2D CeO2 nanoflakes as a high-performance asymmetric supercapacitor electrode material. J Energy Storage 68:107757

    Article  Google Scholar 

  50. Nguyen T, Montemor MF (2019) Metal oxide and hydroxide-based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need-tailored devices. Adv Sci 6:1801797

    Article  Google Scholar 

  51. Jiang F, Jixiang Z, Nian L, Cui L, Yongqiang Z, Xinling Y, Lidong S, Yanping S, Shudong Z, Zhenyang W (2019) Nitrogen-doped graphene prepared by thermal annealing of fluorinated graphene oxide as supercapacitor electrode. J Chem Technol 11:3530–3537

    Google Scholar 

  52. Wu X, Meng L, Wang Q, Zhang W, Wang Y (2017) A flexible asymmetric fibered- supercapacitor based on unique Co3O4@ PPy core-shell nanorod arrays electrode. Chem Eng J 327:193–201

    Article  CAS  Google Scholar 

  53. Wang R, Sui Y, Huang S, Pu Y, Cao P (2018) High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem Eng J 331:527–535

    Article  CAS  Google Scholar 

  54. Mendoza R, Rodriguez-Gonzalez V, Oliva A, Mtz-Enriquez A, Oliva J (2020) Stabilizing the output voltage of flexible graphene supercapacitors by adding porous Ag/N-doped TiO2 nanocomposites on their anodes. Mater Chem Phys 255:123602

    Article  CAS  Google Scholar 

  55. Aloqayli S, Ranaweera C, Wang Z, Siam K, Kahol P, Tripathi P, Srivastava O, Gupta BK, Mishra S, Perez F (2017) Nanostructured cobalt oxide and cobalt sulfide for flexible, high performance and durable supercapacitors. Energy Stor Mater 8:68–76

    Google Scholar 

  56. Gu Y, Fan LQ, Huang JL, Geng CL, Lin JM, Huang ML, Huang YF, Wu JH (2019) Ndoped reduced graphene oxide decorated NiSe2 nanoparticles for highperformance asymmetric supercapacitors. J Power Sources 425:60–68

    Article  CAS  Google Scholar 

  57. Hou L, Shi Y, Wu C, Zhang Y, Ma Y, Sun X, Sun J, Zhang X, Yuan C (2018) Monodisperse metallic NiCoSe2 hollow sub-microspheres: formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors, j. Adv Funct Mater 28:1705921

    Article  Google Scholar 

  58. Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor, j. Chem Soc Rev 38:2520–2531

    Article  CAS  PubMed  Google Scholar 

  59. Zhu Y, Murali S, Stoller MD, Ganesh K, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  CAS  PubMed  Google Scholar 

  60. Lu J, Yang J, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids, j. ACS Nano 3:2367–2375

    Article  CAS  PubMed  Google Scholar 

  61. Trigueiro JPC, Lavall RL, Silva GG (2014) Supercapacitors based on modified graphene electrodes with poly (ionic liquid). J Power Sour 256:256–264

    Article  Google Scholar 

  62. Shao Q, Tang J, Lin Y, Li J, Qin F, Yuan J et al (2015) Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes. J Power Sources 278:751–759

    Article  CAS  Google Scholar 

  63. Guo DC, Mi J, Hao GP, Dong W, Xiong G, Li WC et al (2013) Ionic liquid C16mimBF4 assisted synthesis of poly(benzoxazine-coresol)-based hierarchically porous carbons with superior performance in supercapacitors. J Energy Environ Sci 6:652–659

    Article  CAS  Google Scholar 

  64. Kim J, Kim S (2014) Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties. J Appl Surf Sci 31:295

    Google Scholar 

  65. Helmholtz H (1853) Ueber einige Gesetze der Verlheiiung elektrischcr Strdme in kdrperlichen Leitern mit Anwendung auf die thierisch - elektrischen Versuche. Ann Phys 165:211–233

    Article  Google Scholar 

  66. Yadav MS (2020) Metal oxides nanostructure-based electrode materials for supercapacitor application. J Nanopart Res 22:367

    Article  CAS  Google Scholar 

  67. Yadav S, Devi A (2022) Recent advancements of metal oxides/nitrogen-doped graphene nanocomposites for supercapacitor electrode materials. J Energy Storage 30:101486

    Article  Google Scholar 

  68. WishalBokhari S, Siddique AH, Sherrell PC, Yue X, MaletiraKarumbaiah K, Wei S, Ellis AV, Gao W (2020) Advances in graphene-based supercapacitor electrodes. J Energy Rep 6:2768–2784

    Article  Google Scholar 

  69. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  PubMed  Google Scholar 

  70. Choi H, Yoon H (2015) Nanostructured electrode materials for electrochemical capacitor applications. Nanomater 5:906–936

    Article  CAS  Google Scholar 

  71. Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen ZX (2018) Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci 5:1700322

    Article  Google Scholar 

  72. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  PubMed  Google Scholar 

  73. Conway BE (1991) Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 138:1539

    Article  CAS  Google Scholar 

  74. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons : supercapacitors and hydrogen storage. Ener Environ Sci 7:1250–1280

    Article  CAS  Google Scholar 

  75. Xu G, Han J, Ding B, Nie P, Pan J, Dou H, Li H, Zhang X (2015) Biomass-derived porous carbon materials with sulphur and nitrogen dual-doping for energy storage. Green Chem 17:1668–1674

    Article  CAS  Google Scholar 

  76. Esther Miller E, Hua Y, Handan Tezel F (2018) Materials for energy storage: review of electrode materials and methods of increasing capacitance for supercapacitors. J Energy Storage 20:30–40

    Article  Google Scholar 

  77. Shi F, Li L, Wang X-L, Gua C-D, Tu JP (2014) Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv 79:41910–41921

    Article  Google Scholar 

  78. Khamlich S, Abdullaeva Z, Kennedy JV, Maaza M (2017) High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. Appl Surf Sci 405:329

    Article  CAS  Google Scholar 

  79. Xu M, Kong L, Zhou W, Li H (2007) Hydrothermal synthesis and pseudocapacitance properties of a-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141

    Article  CAS  Google Scholar 

  80. Kumar Mondal A, Liu H, Xie X, Kretschmer K, Wang G (2016) Hydrothermal synthesis of multiwalled carbon nanotube-zinc manganate nanoparticles as anode materials for lithium ion batteries. Chem Plus Chem 81:399

    Google Scholar 

  81. Singh G, Chandra S (2017) Electrochemical performance of MnFe2O4 nano-ferrites synthesized using thermal decomposition method. Int J Hydrogen Energy 43:4058–4066

    Article  Google Scholar 

  82. Sumaiyah N, Emre E (2019) Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanosc Adv 1:2817–2827

    Article  Google Scholar 

  83. Dalvand S, Yaghoubi S, Mousavi-Khoshdel SM, Ghafuri H (2021) Investigating the application of caffeine-based ionic liquid modified by zinc bromide as an effective electrode in supercapacitor, j. Energy Storage 44:103323

    Article  Google Scholar 

  84. Dong S, Ji X, Yu M, Xie Y, Zhang D, He X (2018) Direct synthesis of interconnected porous carbon nanosheet/nickel foam composite for high-performance supercapacitors by microwave-assisted heating. J Porous Mater 25:923–933

    Article  CAS  Google Scholar 

  85. Yan H, Wang J, Fang Y, Zhou M, Guo X, Wang HQ, Dai Y, Li W, Zheng JC (2019) Porous carbon anchored titanium carbonitride for high-performance supercapacitor. Electrochim Acta 304:138–145

    Article  CAS  Google Scholar 

  86. Ji Y, Ren F, Tan S, Lu F, Shi D, Zhang S (2023) Reconstruction of Co/Ni metal-organic-framework based electrode materials with excellent conductivity and integral stability via extended hydrothermal treatment toward improved performance of supercapacitors. J Electroanal Chem 932:117265

    Article  CAS  Google Scholar 

  87. Kumar Km D, Gyu Hong J, Kweon JW, Saeed G, Kim KWH, Lee D, Chang Kang M (2022) Spinel NiCo2O4 nanowires synthesized on Ni foam as innovative binder-free supercapacitor electrodes. J Mater Chem Physics 291:126718

    Article  Google Scholar 

  88. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  CAS  Google Scholar 

  89. Foroozandeh A, Hatefirad P, SafaeiMahmoudabadi Z, Tavasoli A (2023) Catalytic activity of synthesized NiMo catalysts on walnut shell activated carbon for heavy naphtha hydrotreating. Iranian J Chem Chem Eng 42:38–50

    Google Scholar 

  90. Chen H, Guo Y, Wang F, Wang G, Qi P, Guo X, Dai B, Yu F (2017) An activated carbon derived from tobacco waste for use as a supercapacitor electrode material. New Carbon Mater 32:592–599

    Article  CAS  Google Scholar 

  91. Li X, Tang Y, Song J, Yang W, Wang M, Zhu C, Zhao W, Zheng J, Lin Y (2018) Selfsupporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 129:236–244

    Article  CAS  Google Scholar 

  92. Kumar R, Singh BK, Soam A, Parida S, Sahajwalla V, Bhargava P (2020) In situ carbon-supported titanium dioxide (ICS-TiO2) as an electrode material for high performance supercapacitors. Nanoscale Adv 2:2376–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rani MU, Naresh V, Damodar D, Muduli S, Martha SK, Deshpande AS (2021) In-situ formation of mesoporous SnO2@C nanocomposite electrode for supercapacitors. Electrochim Acta 365:137284–137325

    Article  CAS  Google Scholar 

  94. KumarJha M, Shah D, Mulmi P, Joshi S, KumarSharma R, Pant B, Park M (2023) Hem Raj Pant, Development of activated carbon from bhang (Cannabis) stems for supercapacitor electrodes. J Mater Lett 344:134436

    Article  CAS  Google Scholar 

  95. Duan G, Xiao J, Chen L, Zhang C, Jian S, He S, Wang F (2023) Zinc gluconate derived porous carbon electrode assisted high rate and long cycle performance supercapacitor. J Energy Storage 67:107559

    Article  Google Scholar 

  96. Liu MQ, Xu M, Xue YF, Ni W, Huo SL, Wu LL, Yang ZY, Yan YM (2018) Efficient capacitive deionization using natural basswood-derived, freestanding, hierarchically porous carbon electrodes. ACS Appl Mater Interfaces 10:31260–31270

    Article  CAS  PubMed  Google Scholar 

  97. Zhao HQ, Cheng Y, Liu W, Yang LJ, Zhang BS, Wang LP, Ji GB, Xu ZCJ (2019) Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett 11:24

    Article  CAS  Google Scholar 

  98. Zhang WL, Xu JH, Hou DX, Yin J, Liu DB, He YP, Lin HB (2018) Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. J Colloid Interface Sci 530:338–344

    Article  CAS  PubMed  Google Scholar 

  99. Wang H, Yi H, Chen X, Wang X (2014) One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J Mater Chem A 2:1165–1173

    Article  CAS  Google Scholar 

  100. Wu Y, Gao G, Wu G (2015) Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life. J Mater Chem A 3:1828–1832

    Article  CAS  Google Scholar 

  101. Bakandritsos A, Jakubec P, Pykal M, Otyepka M (2019) Covalently functionalized graphene as a supercapacitor electrode material. FlatChem 13:25–33

    Article  CAS  Google Scholar 

  102. Khademi B, Nateghi MR, Shayesteh MR, Nasirizadeh N (2021) High voltage binder free hybrid supercapacitor based on reduced graphene oxide/graphene oxide electrodes and “water in salt” electrolyte. J Energy Storage 43:103164

    Article  Google Scholar 

  103. Fu X-Y, Shu R-Y, Ma C-J, Zhang Y-Y, Jiang HB, Yao MN (2023) Self-assembled MXene-graphene oxide composite enhanced laser-induced graphene based electrodes towards conformal supercapacitor applications. J Appl Surf Sci 631:157549

    Article  CAS  Google Scholar 

  104. Tian J, Wu S, Yin X, Wu W (2019) Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. J Appl Surf Sci 496:143696

    Article  CAS  Google Scholar 

  105. Zhu J, Zu J, Liu J, Wang Y, Pei M, Xu Y (2020) Self-assembled reduced graphene oxide films with different thicknesses as high performance supercapacitor electrodes. J Energy Storage 32:101795

    Article  Google Scholar 

  106. Lee HB, Veerasubramani GK, Lee KS, Lee H, HeeHan T (2022) Joule heating-induced faradaic electrode-decorated graphene fibers for flexible fiber-shaped hybrid supercapacitor with high volumetric energy density. J Carbon 198:252–263

    Article  CAS  Google Scholar 

  107. Zaheer M, Abbasi HN (2022) Fabrication and characterization of graphene coated nickel electrodes with internally stacked double layer supercapacitors. J Ain Shams Eng J 13:101795

    Article  Google Scholar 

  108. Zhang Y, Li X, Wang D, Cai J, Chen H, Wei D, Yang L, Bai L, Liang Y, Yang H (2023) Lightweight flexible solid-state supercapacitor based on graphene/non-woven fabric electrode. J Mater Sci Eng: B 294:116537

    Article  CAS  Google Scholar 

  109. Khot SD, Malavekar DB, Bagwade PP, Nikam RP, Lokhande CD (2023) Synthesis of reduced graphene oxide (rGO)/dysprosium selenide (Dy2Se3) composite electrode for energy storage; flexible asymmetric supercapacitor. J Phys Chem Solids 179:111419

    Article  CAS  Google Scholar 

  110. Li S, Jiang H, Yang K, Zhang Z, Li S, Luo N, Liu Q, Wei R (2018) Three dimensional hierarchical graphene/TiO2 composite as high-performance electrode for supercapacitor. J Alloy Compd 746:670–676

    Article  CAS  Google Scholar 

  111. Canal-Rodríguez M, Angel Menéndez J, Arenillas A (2018) Performance of carbon xerogel-graphene hybrids as electrodes in aqueous supercapacitors. J Electrochimica Acta 276:28–36

    Article  Google Scholar 

  112. William S Jr, Hummers Richard EO (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

    Article  Google Scholar 

  113. Brodie BC (1960) Sur le poids atomique du graphite. Ann Chim Phys 59:466–472

    Google Scholar 

  114. Hofmann U, Konig E (1937) Untersuchungen über graphitoxyd. Z Anorg Allg Chem 234:311–336

    Article  CAS  Google Scholar 

  115. Hofmann U, Holst R (1939) Uber die Säurenatur und die Methylierung von Graphitoxyd. Berichte der deutschen chemischen Gesellschaft (A and B Series) 72:754–771

    Article  Google Scholar 

  116. Staudenmaier L (1898) Verfahren zur darstellung der graphitsaure. Ber Dtsch Chem Ges 31:1481–1487

    Article  CAS  Google Scholar 

  117. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  CAS  PubMed  Google Scholar 

  118. Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. J Ionics 25:1419–1445

    Article  CAS  Google Scholar 

  119. S Dalvand, Z Khoushab, SM MousaviKhoshdel, H Ghafuri, HR Esmaili Zand, M Omidvar Tungstate-modified ionic liquid functionalized magnetic graphene oxide: synthesis and application as a high-performance supercapacitor. https://doi.org/10.2139/ssrn.3968871

  120. Sun L, Wang L, Tian C, Tan T, Xie Y, Shi K, Li M, Fu H (2012) Nitrogen-doped graphenewith high nitrogen level via one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv 2:4498–4506

    Article  CAS  Google Scholar 

  121. Xian K, Nie B, Li Z, Gao M, Li Z, Shang C, Liu Y, Guo Z, Pan H (2020) TiO2 decorated porous carbonaceous network structures offer confinement, catalysis and thermal conductivity for effective hydrogen storage of LiBH4. Chem Eng J 407:127156

    Article  Google Scholar 

  122. Fu W, Zhao E, Ma R, Sun Z, Yang Y, Sevilla M, Fuertes AB, Magasinski A, Yushin G (2020) Anatase TiO2 confined in carbon nanopores for high-energy Li-Ion hybrid supercapacitors operating at high rates and subzero temperatures. Adv Energy Mater 10:1902993

    Article  CAS  Google Scholar 

  123. Kong D, Cheng C, Wang Y, Wong JI, Yang Y, Yang HY (2015) Three-dimensional Co3O4@C@ Ni3S2 sandwich-structured nanoneedle arrays: towards high-performance flexible all-solid-state asymmetric supercapacitors. J Mater Chem 3:16150–16161

    Article  CAS  Google Scholar 

  124. Su F, Lyu X, Liu C, Miao M (2016) Flexible two-ply yarn supercapacitors based on carbon nanotube/stainless steel core spun yarns decorated with Co3O4 nanoparticles and MnOx composites. Electrochim Acta 215:535–542

    Article  CAS  Google Scholar 

  125. Wang B, Chen JS, Wu HB, Wang Z, Lou XW (2011) Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J Am Chem Soc 133:17146–17148

    Article  CAS  PubMed  Google Scholar 

  126. Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338

    Article  CAS  PubMed  Google Scholar 

  127. Shen J, Wang Q, Zhang K, Wang S, Li L, Dong S, Zhao S, Chen J, Sun R, Wang Y (2019) Flexible carbon cloth based solid-state supercapacitor from hierarchical holothurian-morphological NiCo2O4@ NiMoO4/PANI. Electrochim Acta 320:134578

    Article  CAS  Google Scholar 

  128. Cao X, Zheng B, Shi W, Yang J, Fan Z, Luo Z, Rui X, Chen B, Yan Q, Zhang H (2015) Reduced graphene oxide-wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv Mater 27:4695–4701

    Article  CAS  PubMed  Google Scholar 

  129. Zhou X, Chen Q, Wang A, Xu J, Wu S, Shen J (2016) Bamboo-like composites of V2O5/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors. ACS Appl Mater Interfaces 8:3776–3783

    Article  CAS  PubMed  Google Scholar 

  130. MahmoudiQashqay S, Rahimi J, Reza Zamani-Meymian M, Maleki A (2023) Porous Co3O4/VS4/rGO-SDBS@NF nanoflower as a high performance supercapacitor electrode. J Energy Storage 72:108548

    Article  Google Scholar 

  131. Chandrashekhar R, Abhijit AY (2023) Spray-deposited cobalt-doped RuO2 electrodes for high-performance supercapacitors. J Electrochimica Acta 437:141521

    Article  Google Scholar 

  132. Brousse K, Nguyen S, Gillet A, Pinaud S, Tan R, Meffre A, Soulantica K, Chaudret B, Taberna P-L, Respaud M (2018) Laser-scribed Ru organometallic complex for the preparation of RuO2 micro-supercapacitor electrodes on flexible substrate. Electrochim Acta 281:816–821

    Article  CAS  Google Scholar 

  133. Zhao P, Wang N, Yao M, Ren H, Hu W (2020) Hydrothermal electrodeposition incorporated with CVD-polymerisation to tune PPy@ MnO2 interlinked core-shell nanowires on carbon fabric for flexible solid-state asymmetric supercapacitors. Chem Eng J 380:122488

    Article  CAS  Google Scholar 

  134. Zhang J, Wang Y, Yu C, Zhu T, Li Y, Cui J, Wu J, Shu X, Qin Y, Sun J (2020) Hierarchical NiCo2O4/MnO2 core–shell nanosheets arrays for flexible asymmetric supercapacitor. J Mater Sci 55:688–700

    Article  CAS  Google Scholar 

  135. Pan Z, Jin L, Yang C, Ji X, Liu M (2023) Mo-doped MnO2@CC electrode for high-performance 2.4 V aqueous asymmetric supercapacitors. J Chem Eng J 470:144084

    Article  CAS  Google Scholar 

  136. Khalid MU, Huwayz MAL, Zulfiqar S, Cochran EW, Alrowaili ZA, Al-Buriahi MS, Warsi MF, Shahid M (2023) Phase transformation of α-MnO2 to β- MnO2 induced by Cu doping: improved electrochemical performance for next generation supercapacitor. J Mater Sci Eng: B 295:116580

    Article  CAS  Google Scholar 

  137. Wang Y-T, Lu A-H, Zhang H-L, Li W-C (2011) Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors. J Phys Chem C 115:5413

    Article  CAS  Google Scholar 

  138. Song MS, Lee KM, Lee YR, Kim IY, Kim TW, Gunjakar JL, Hwang SJ (2010) Porously assembled 2D nanosheets of alkali metal manganese oxides with highly reversible pseudocapacitance behaviors. J Phys Chem C 114:22134

    Article  CAS  Google Scholar 

  139. Jena R, Yue C, Sk M, Ghosh K (2017) A novel high performance poly (2-methyl thioaniline) based composite electrode for supercapacitors application. Carbon 115:175–187

    Article  CAS  Google Scholar 

  140. Garcia-Torres J, Crean C (2018) Ternary composite solid-state flexible supercapacitor based on nanocarbons/manganese dioxide/PEDOT:PSS fibres. Mater Des 155:194–202

    Article  CAS  Google Scholar 

  141. Zhang X, Wang J, Liu J, Wu J, Chen H, Bi H (2017) Design and preparation of a ternary composite of graphene oxide/carbon dots/polypyrrole for supercapacitor application: importance and unique role of carbon dots. Carbon 115:134–146

    Article  CAS  Google Scholar 

  142. Zhang L, Huang D, Hu N, Yang C, Li M, Wei H, Yang Z, Su Y, Zhang Y (2017) Three dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. J Power Sources 342:1–8

    Article  CAS  Google Scholar 

  143. Mousavi MF, Hashemi M, Rahmanifar MS, Noori A (2017) Synergistic effect between redox additive electrolyte and PANI-rGO nanocomposite electrode for high energy and high power supercapacitor. Electrochim Acta 228:290–298

    Article  CAS  Google Scholar 

  144. Chetana S, Upadhyay S, ChandraJoshi N, Kumar N, Choudhary P, Sharma N, Thakur VN (2023) A facile supercritical fluid synthesis of cobalt sulfide integrated with MXene and PANI/PEDOT nanocomposites as electrode material for supercapacitor applications. J FlatChem 37:100456

    Article  Google Scholar 

  145. GhasemiKenesi AH, Ghorbani M, SoleimaniLashkenari M (2022) High electrochemical performance of PANI/CdO nanocomposite based on graphene oxide as a hybrid electrode materials for supercapacitor application. Int J Hydrogen Energy 47:38849–38861

    Article  Google Scholar 

  146. Foroozandeh A, Abdouss M, SalarAmoli H, Pourmadadi M, Yazdian F (2023) An electrochemical aptasensor based on g-C3N4/Fe3O4/PANI nanocomposite applying cancer antigen_125 biomarkers detection. J Process Biochem 127:82–91

    Article  CAS  Google Scholar 

  147. Pedrós J, Boscá A, Martínez J, Ruiz-Gómez S, Pérez L, Barranco V, Calle F (2016) Polyaniline nanofiber sponge filled graphene foam as high gravimetric and volumetric capacitance electrode. J Power Sources 317:35–42

    Article  Google Scholar 

  148. Sharma RK, Rastogi AC, Desu SB (2008) Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. J Electrochem Commun 10:268–272

    Article  CAS  Google Scholar 

  149. Liu K, Hu Z, Xue R, Zhang J, Zhu J (2008) Electropolymerization of high stable poly (3,4-ethylenedioxythiophene) in ionic liquids and its potential applications in electrochemical capacitor. J Power Sources 179:858–862

    Article  CAS  Google Scholar 

  150. Eftekhari A (2017) Supercapacitors utilising ionic liquids. J Energy Storage Mater 9:47–69

    Article  Google Scholar 

  151. Medagedara ADT, Waduge NM, Bandara TMWJ, Wimalasena IGKJ, Dissanayake M, Tennakone K, Rajapakse RMG, Rupasinghe CP, Kumara GRA (2022) Triethylammonium thiocyanate ionic liquid electrolyte-based supercapacitor fabricated using coconut shell-derived electronically conducting activated charcoal electrode material. J Energy Storage 55:105628

    Article  Google Scholar 

  152. Zhu T, Song Z, Lin J, Wang Y, Sun S, Fan L, Lin J-Y, Wu J (2021) Cucurbit [8] uril-derived porous carbon as high-performance electrode material for ionic liquid-based supercapacitor. J Energy Storage 38:102527

    Article  Google Scholar 

  153. de Araujo Chagas H, EternoFileti E, Colherinhas G (2023) Comparing supercapacitors with graphene/graphyne electrodes and [Bmim][PF6], [Emim][BF4], [Ch][Gly] and [Pyr][Tfsi] ionic liquids using molecular dynamics. J Mol Liq 379:121703

    Article  Google Scholar 

  154. Aetizaz M, Sarfaraz S, Ayub K (2023) Interaction of imidazolium based ionic liquid electrolytes with carbon nitride electrodes in supercapacitors; a step forward for understanding electrode–electrolyte interaction. J Mol Liq 369:120955

    Article  CAS  Google Scholar 

  155. He X, Zhuang T, Ruan S, Xia X, Xia Y, Zhang J, Huang H, Gan Y, Zhang WK (2023) An innovative poly(ionic liquid) hydrogel-based anti-freezing electrolyte with high conductivity for supercapacitor. Chem Eng J 466:143209

    Article  CAS  Google Scholar 

  156. Kim J, Kim S (2014) Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode. J Electrochim Acta 119:11–15

    Article  CAS  Google Scholar 

  157. Pak AJ, Paek E, Hwang GS (2013) Relative contributions of quantum and double layer capacitance to the supercapacitor performance of carbon nanotubes in an ionic liquid. Phys Chem Chem Phys 15:19741–19747

    Article  CAS  PubMed  Google Scholar 

  158. Vatamanu J, Cao L, Borodin O, Bedrov D, Smith GD (2011) On the influence of surface topography on the electric double layer structure and differential capacitance of graphite/ionic liquid interfaces. J Phys Chem Lett 2:2267–2272

    Article  CAS  Google Scholar 

  159. Qiu B, Pan C, Qian W, Peng Y, Qiu L, Yan F (2013) Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors. J Mater Chem A 1:6373–6378

    Article  CAS  Google Scholar 

  160. Zhang H, Ling Y, Peng Y (2020) Jiujun Zhang, Shiyou Guan, Nitrogen-doped porous carbon materials derived from ionic liquids as electrode for supercapacitor. J Inorg Chem Commun 115:107856

    Article  CAS  Google Scholar 

  161. Chinnappan A, Bandal H, Kim H (2017) Seeram Ramakrishna, Mn nanoparticles decorated on the ionic liquid functionalized multiwalled carbon nanotubes as a supercapacitor electrode material. Chem Eng J 316:928–935

    Article  CAS  Google Scholar 

  162. Jadhav S et al (2019) Manganese dioxide/ reduced graphene oxide composite an electrode material for high-performance solid state supercapacitor. J Electrochim Acta 299:34–44

    Article  CAS  Google Scholar 

  163. Ghaly HA et al (2019) Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@3D graphene electrodes with high power and energy densities. J Electrochim Acta 310:58–69

    Article  CAS  Google Scholar 

  164. Pourfarzad H et al (2019) Synthesis of Ni–Co-Fe layered double hydroxide and Fe2O3/graphene nanocomposites as actively materials for high electrochemical performance supercapacitors. J Electrochim Acta 317:83–92

    Article  CAS  Google Scholar 

  165. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. J Nano Lett 8:2664

    Article  CAS  Google Scholar 

  166. Deng L, Hao Z, Wang J, Zhu G, Kang L, Liu Z, Yang Z, Wang Z (2013) Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. J Electrochim Acta 89:191–198

    Article  CAS  Google Scholar 

  167. Garakani MA, Abouali S, Xu Z, Huang J, Huang J, Kim J (2017) Heterogeneous, mesoporous NiCo2O4–MnO2/graphene foam for asymmetric supercapacitors with ultrahigh specific energies. J Mater Chem A 5:3547–3557

    Article  CAS  Google Scholar 

  168. Manuraj M, Jomiya Chacko KN, NarayananUnni RB, Rakhi (2020) Heterostruct red MoS2-RuO2 nanocomposite: a promising electrode material for supercapacitors. J Alloys Compds 836:155420

    Article  CAS  Google Scholar 

  169. Park S, Shin D, Yeo T, Seo B, Hwang H, Lee J, Choi W (2020) Combustion driven synthesis route for tunable TiO2/RuO2 hybrid composites as high-performance electrode materials for supercapacitors. Chem Eng J 384:123269

    Article  CAS  Google Scholar 

  170. Chen J, Nakate UT, Nguyen QT, Wei Y, Park S (2022) Surface activated Co3O4/MoO3 nanostructured electrodes by air-plasma treatment toward enhanced supercapacitor. J Mater Sci Eng: B 285:115928

    Article  CAS  Google Scholar 

  171. Akkinepally B, Neelakanta Reddy I, Lee C, Jo Ko T, Srinivasa Rao P, Shim J (2023) Promising electrode material of Fe3O4 nanoparticles decorated on V2O5 nanobelts for high-performance symmetric supercapacitors. J Ceram Int 49:6280–6288

    Article  CAS  Google Scholar 

  172. Mujawar SH, Ambade SB, Battumur T, Ambade RB, Lee SH (2011) Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application. J Electrochim Acta 56:4462–4466

    Article  CAS  Google Scholar 

  173. Fang Y, Liu J, Yu DJ, Wicksted JP, Kalkan K, Topal CO, Flanders BN, Wu J, Li J (2010) Self-supported supercapacitor membranes: polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. J Power Sources 195:674–679

    Article  CAS  Google Scholar 

  174. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. J Electrochem Commun 10:1056–1059

    Article  CAS  Google Scholar 

  175. Dalvand S, Khoushab Z, Mousavi-Khoshdel SM, Ghafuri H, EsmailiZand HR, Omidvar M (2023) Graphene oxide@Fe3o4@Tungstate modified ionic liquid as a novel electrode material for high-performance supercapacitor. J Int J Hydrogen Energy 48:10098–10107

    Article  CAS  Google Scholar 

  176. HalabShaeliIessa K, Zhang Y, Zhang G, Xiao F, Wang S (2016) Conductive porous sponge-like ionic liquid-graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor. J Power Sources 302:92–97

    Article  CAS  Google Scholar 

  177. B Qiu, C Pan, W Qian, Y Peng, L Qiu, F Yan (2013) Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors. J Mater Chem A 21. https://doi.org/10.1039/C3TA10774D

Download references

Funding

This work was supported by Iranian Research & Development Center for Chemical Industries (IRDCI), and the authors gratefully acknowledge for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

A: Samad Dalvand: Conceptualization, Investigation, Visualization, Supervision, Data curation, Writing – original draft B: Amin Foroozandeh: Investigation, Visualization, Supervision C: Amin Heydarian: Methodology, Investigation D: Farshad Salehi Nasab: Methodology, Investigation E: Mehran Omidvar: Methodology, Investigation, Writing – original draft F: Najmeh Yazdanfar: Conceptualization, Investigation, Visualization, Supervision G: Alireza Asghari: Methodology, Investigation

Corresponding authors

Correspondence to Samad Dalvand or Najmeh Yazdanfar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalvand, S., Foroozandeh, A., Heydarian, A. et al. A review on carbon material-metal oxide-conducting polymer and ionic liquid as electrode materials for energy storage in supercapacitors. Ionics 30, 1857–1870 (2024). https://doi.org/10.1007/s11581-024-05426-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05426-3

Keywords

Navigation