Skip to main content
Log in

Simulation exploration on capacity fade and aging prediction of M1254S2 button-type lithium-ion battery

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Small lithium-ion (Li-ion) batteries are often used in smart devices. Due to its low battery capacity, the lifespan of the headset needs to be improved by reducing the decay of the Li-ion battery capacity. Here, an electrochemical-thermal coupling model and a capacity fade model based on the pseudo-two-dimensional (P2D) model are established by COMSOL multi-physics field simulation software. The aging behavior of the Li-ion battery during cycling and the effects of different factors on the battery capacity are investigated; the condition of the battery is further predicted. The simulation parameters include charge–discharge rate, initial concentration of lithium ions in the liquid phase, and radius of the anode particles. The results show that the electrolyte diffusion coefficient increases with the increase of temperature in the range of 1000–1600 mol/m3 concentration. However, the initial concentration of 1600 mol/m3 leads to a higher concentration increment (421 mol/m3) during 3000 cycles; it aggravates the concentration polarization. The larger particle radius forms a thicker SEI film. When the radius rises from 2 to 12.5 μm, the thickness and resistance of the SEI film increase to 1136.51 nm and 6.685 m \(\Omega\)∙m2, respectively. It consumes more lithium ions and increases the cycle time under the same current.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors confirm that the part of data supporting the findings of this study are available within the article [and/or its supplementary materials], and the remaining data that support the findings of this study are openly available in the COMSOL software database.

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  PubMed  Google Scholar 

  2. Goodenough JB, Park K (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  CAS  PubMed  Google Scholar 

  3. Laresgoiti I, Käbitz S, Ecker M, Sauer DU (2015) Modeling mechanical degradation in lithium ion batteries during cycling: solid electrolyte interphase fracture. J Power Sources 300:112–122

    Article  CAS  Google Scholar 

  4. Iurilli P, Brivio C, Wood V (2021) On the use of electrochemical impedance spectroscopy to characterize and model the aging phenomena of lithium-ion batteries: a critical review. J Power Sources 505:229860

    Article  CAS  Google Scholar 

  5. Zhu J, Dewi Darma MS, Knapp M, Sørensen DR, Heere M, Fang Q, Wang X, Dai H, Mereacre L, Senyshyn A, Wei X, Ehrenberg H (2020) Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance. J Power Sources 448:227575

    Article  CAS  Google Scholar 

  6. Zhu J, Knapp M, Sørensen DR, Heere M, Darma MSD, Müller M, Mereacre L, Dai H, Senyshyn A, Wei X, Ehrenberg H (2021) Investigation of capacity fade for 18650-type lithium-ion batteries cycled in different state of charge (SoC) ranges. J Power Sources 489:229422

    Article  CAS  Google Scholar 

  7. Fong R, von Sacken U, Dahn JR (1990) Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc 137:2009–13

    Article  CAS  Google Scholar 

  8. Novak P, Joho F, Lanz M, Rykart B, Panitz J, Alliata D, Kotz R, Haas O (2001) The complex electrochemistry of graphite electrodes in lithium-ion batteries. J Power Sources 97-98:39–46

  9. Li J, Murphy E, Winnick J, Kohl PA (2001) The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries. J Power Sources 102:302–309

    Article  CAS  Google Scholar 

  10. Liu S, Su J, Zhao J, Chen X, Zhang C, Huang T, Wu J, Yu A (2018) Unraveling the capacity fading mechanisms of LiNi0.6Co0.2Mn0.2O2 at elevated temperatures. J Power Sources 393:92–98

    Article  CAS  Google Scholar 

  11. Zhu J, Su P, Dewi Darma MS, Hua W, Mereacre L, Liu-Théato X, Heere M, Sørensen DR, Dai H, Wei X, Knapp M, Ehrenberg H (2022) Multiscale investigation of discharge rate dependence of capacity fade for lithium-ion battery. J Power Sources 536:231516

    Article  CAS  Google Scholar 

  12. Watanabe S, Kinoshita M, Hosokawa T, Morigaki K, Nakura K (2014) Capacity fading of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (effect of depth of discharge in charge–discharge cycling on the suppression of the micro-crack generation of LiAlyNi1−x−yCoxO2 particle). J Power Sources 260:50–56

    Article  CAS  Google Scholar 

  13. Amine K, Chen C, Liu J, Hammond M, Jansen A, Dees D, Bloom I, Vissers D, Henriksen G (2001) Factors responsible for impedance rise in high power lithium ion batteries. J Power Sources 97-98:684-687

  14. Zhang D, Haran BS, Durairajan A, White RE, Podrazhansky Y, Popov BN (2000) Studies on capacity fade of lithium-ion batteries. J Power Sources 91:122–129

    Article  CAS  Google Scholar 

  15. Shim J, Striebel KA (2003) Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4. J Power Sources 119–121:955–958

    Article  Google Scholar 

  16. Spotnitz R (2003) Simulation of capacity fade in lithium-ion batteries. J Power Sources 113:72–80

    Article  CAS  Google Scholar 

  17. Sikha G, Popov BN, White RE (2004) Effect of porosity on the capacity fade of a lithium-ion battery. J Electrochem Soc 151:A1104

    Article  CAS  Google Scholar 

  18. Ramadass P, Haran B, Gomadam PM, White R, Popov BN (2004) Development of first principles capacity fade model for Li-ion cells. J Electrochem Soc 151:A196-203

    Article  CAS  Google Scholar 

  19. Ekstrom H, Lindbergh G (2015) A model for predicting capacity fade due to SEI formation in a commercial graphite/LiFePO4 Cell. J Electrochem Soc 162:A1003-1007

    Article  Google Scholar 

  20. Cai L, White RE (2011) Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc., Multiphysics (MP) software. J Power Sources 196:5985–5989

    Article  CAS  Google Scholar 

  21. Doyle M, Fuller TF, Newman J (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140:1526–1533

    Article  CAS  Google Scholar 

  22. Fuller TF, Doyle M, Newman J (1994) Simulation and optimisation of the dual lithium ion insertion cell. J Electrochem Soc 141:1–10

    Article  CAS  Google Scholar 

  23. Doyle C (1995) Design and simulation of lithium rechargeable batteries. Lawrence Berkeley National Laboratory, California

  24. Hariharan KS, Tagade P, Ramachandran S (2018) Mathematical modeling of lithium batteries. Springer Cham, Berlin

  25. Landegren GF (1957) Newton’s law of cooling. Am J Phys 25:648–649

    Article  Google Scholar 

  26. Bernardi D, Pawlikowski E, Newman J (1985) A general energy balance for battery systems. J Electrochem Soc 132:5–12

    Article  CAS  Google Scholar 

  27. Tang S, Wang Z, Guo H (2019) Systematic parameter acquisition method for electrochemical model of 4.35 V LiCoO2 batteries. Solid State Ionics 343:115083

  28. Kumaresan K, Sikha G, White RE (2008) Thermal model for a Li-ion cell. J Electrochem Soc 155:A164

    Article  CAS  Google Scholar 

  29. Aurbach D, Markovsky B, Shechter A, Ein-Eli Y, Cohen H (1996) A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J Electrochem Soc 143:3809–20

    Article  CAS  Google Scholar 

  30. Wang Y, Nakamura S, Ue M, Balbuena PB (2001) Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate. J Am Chem Soc 123:11708–11718

    Article  CAS  PubMed  Google Scholar 

  31. Kim S, Duin ACTV, Shenoy VB (2011) Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: a molecular dynamics study. J Power Sources 196:8590–8597

    Article  CAS  Google Scholar 

  32. Tasaki K, Goldberg A, Lian J, Walker M, Timmons A, Harris SJ (2009) Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents. J Electrochem Soc 156:A1019

    Article  CAS  Google Scholar 

  33. Ciosek Högström K, Malmgren S, Hahlin M, Rensmo H, Thébault F, Johansson P, Edström K (2013) The influence of PMS-additive on the electrode/electrolyte interfaces in LiFePO4/graphite Li-ion batteries. J Phys Chem C 117:23476–23486

    Article  Google Scholar 

  34. Lamorgese A, Mauri R, Tellini B (2018) Electrochemical-thermal P2D aging model of a LiCoO2/graphite cell: capacity fade simulations. J Energy Storage 20:289–297

    Article  Google Scholar 

  35. Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114:11503–11618

    Article  CAS  PubMed  Google Scholar 

  36. Ji Y, Zhang Y, Wang C (2013) Li-ion cell operation at low temperatures. J Electrochem Soc 160:A636-649

    Article  CAS  Google Scholar 

  37. Bai P, Li J, Brushett FR, Bazant MZ (2016) Transition of lithium growth mechanisms in liquid electrolytes. Energ Environ Sci 9:3221–3229

    Article  CAS  Google Scholar 

  38. Zhou X, Huang J, Pan Z, Ouyang M (2019) Impedance characterization of lithium-ion batteries aging under high-temperature cycling: importance of electrolyte-phase diffusion. J Power Sources 426:216–222

    Article  CAS  Google Scholar 

  39. Valoen LO, Reimers JN (2005) Transport properties of LiPF6-based Li-ion battery electrolytes. J Electrochem Soc 152:A882–A891

    Article  CAS  Google Scholar 

  40. Yang X, Wang C (2018) Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries. J Power Sources 402:489–498

    Article  CAS  Google Scholar 

  41. Dong T, Peng P, Jiang F (2018) Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations. Int J Heat Mass Tran 117:261–272

    Article  CAS  Google Scholar 

  42. Tran TD, Feikert JH, Pekala RW, Kinoshita K (1996) Rate effect on lithium-ion graphite electrode performance. J Appl Electrochem 26:1161–1167

    Article  CAS  Google Scholar 

  43. Blaubaum L, Roder F, Nowak C, Chan H, Kwade A, Krewer U (2020) Impact of particle size distribution on performance of lithium-ion batteries. ChemElectroChem 7:1–23

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No.. 52174338), Natural Science Foundation of Hunan Province, China (No. 2022JJ20086 & 2021JJ30796), and Central South University Innovation-Driven Research Programme (No. 2023CXQD005). This work was supported in part by the High-Performance Computing Center of Central South University, Amperex Technology Limited, and Jiangxi Provincial Key Laboratory of Flash Green Development and Recycling.

Author information

Authors and Affiliations

Authors

Contributions

Feiyang Su and Jinlin Liu wrote the main manuscript and Jin Xiao.Qifan Zhong.Liping Wang.Jindi Huang.Bo Hong.Zhenhua Zhang. reviewed the manuscript.

Corresponding author

Correspondence to Qifan Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 469 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, F., Xiao, J., Wang, L. et al. Simulation exploration on capacity fade and aging prediction of M1254S2 button-type lithium-ion battery. Ionics 30, 2055–2068 (2024). https://doi.org/10.1007/s11581-024-05423-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05423-6

Keywords

Navigation