Skip to main content

Advertisement

Log in

A dynamic capacity fading model with thermal evolution considering variable electrode thickness for lithium-ion batteries

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Capacity is one of the key parameters to characterize the performances of lithium-ion batteries. Heat generation analysis is essential to evaluate the safety of batteries. To figure out the effects of electrode thickness on capacity fade and thermal behaviors, a capacity fading model is proposed considering reaction kinetics and mass transfer processes on solid electrolyte interface (SEI) layers coupled with thermal evolution. Simulations are conducted on seven LiFePO4 batteries with variable electrode thicknesses. Results show that, with the increase of electrode thickness, the capacity losses of batteries deteriorate, and the total heat generation aggravates. For the battery with thick electrode, both the polarization overpotential and the gradient of lithium ion concentrations on particle surfaces of active materials increase on the edges, and then decrease perpendicularly to the cathodes. Under the adiabatic conditions, the temperature of battery (with anode 68 μm and cathode 140 μm) is increased to over 130 °C at the sixth cycle. The temperature of batteries declines when discharging in the beginning and then rises, which is noticeable for the batteries with thin electrodes. The proposed model and the simulation results would provide deep insights into both design and operation of batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a s :

Active area per unit electrode volume, m2 m−3

c :

Concentration, mol m−3

c p :

Specific heat capacity, J kg−1 K−1

D :

Diffusion coefficient, m2 s−1

E a :

Active energy, kJ mol−1

f ± :

Electrolyte activity coefficient

F :

Faradays constant, 98465 C mol−1

h :

Convective heat transfer coefficient, W m−2 K−1

i :

Reaction current, A m−2

i app :

Applied current density, A m−2

i loc :

Local current density, A m−2

i Li :

Reaction current for intercalation reaction, A m−2

i side :

Reaction current for side reaction, A m−2

k :

Reaction rate constant, m s−1

L :

Thickness, μm

M :

Molecular weight, kg mol−1

q rea :

Reaction heat generation, W m−3

q act :

Irreversible polarization heat generation, W m−3

q ohm :

Ohmic heat generation, W m−3

r :

Radial coordinate, m

R :

Universal gas constant, 8.314 J mol−1 K−1

R s :

Particle radius, m

R SEI :

Resistance of the SEI layer, Ω m2

S a :

Active area per unit electrode volume, m2 m−3

SOC :

States of charge

t :

Time, s

\( {t}_{+}^0 \) :

Transference number

T :

Temperature, K

u :

Growth rate of the SEI layer, m s−1

U :

Open circuit voltage (OCV), V

x :

x-coordinate, m

β :

Charge transfer coefficient.

δ :

Thickness of the SEI layer, nm

ε :

Porosity

η :

Overpotential, V

λ :

Thermal conductivity, W m−1 K−1

ρ :

Density, kg m−3

σ :

Ionic conductivity, S m−1

ϕ :

Voltage, V

υ :

The product of thermodynamic factor

eff :

Effective

1 :

Solid phase

2 :

Electrolyte phase

EC :

Ethylene carbonate in electrolyte

j :

Anode, cathode or separator

max :

Maximum

n :

Anode

p :

Cathode

s :

Separator

side :

Side reaction

SEI :

SEI layer

References

  1. Purvins A, Zubaryeva A, Llorente M, Tzimas E, Mercier A (2011) Challenges and options for a large wind power uptake by the European electricity system. Appl Energy 88(5):1461–1469. https://doi.org/10.1016/j.apenergy.2010.12.017

    Article  Google Scholar 

  2. Kil KC, Paik U (2015) Lithium salt of carboxymethyl cellulose as an aqueous binder for thick graphite electrode in lithium ion batteries. Macromol Res 23(8):719–725. https://doi.org/10.1007/s13233-015-3094-1

    Article  CAS  Google Scholar 

  3. Franco AA (2013) Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Adv 3(32):13027–13058

    Article  CAS  Google Scholar 

  4. Zheng H, Li J, Song X, Liu G, Battaglia VS (2012) A comprehensive understanding of electrode thickness effects on the electrochemical performances of li-ion battery cathodes. Electrochim Acta 71:258–265. https://doi.org/10.1016/j.electacta.2012.03.161

    Article  CAS  Google Scholar 

  5. Hamankiewicz B, Michalska M, Krajewski M, Ziolkowska D, Lipinska L, Korona K, Kaminska M, Czerwinski A (2014) The effect of electrode thickness on electrochemical performance of LiMn2O4 cathode synthesized by modified sol–gel method. Solid State Ionics 262:9–13. https://doi.org/10.1016/j.ssi.2013.08.010

    Article  CAS  Google Scholar 

  6. Doyle M, Fuller TF, Newman J (1993) Modeling of calvanostatic charge and discharge of the lithium polymer insertion cell. J Electrochemical Soc 140(6):1526–1533. https://doi.org/10.1149/1.2221597

    Article  CAS  Google Scholar 

  7. Zheng Q, Li X, Cheng Y, Ning G, Xing F, Zhang H (2014) Development and perspective in vanadium flow battery modeling. Appl Energy 132:254–266. https://doi.org/10.1016/j.apenergy.2014.06.077

    Article  CAS  Google Scholar 

  8. Jokar A, Rajabloo B, Desilets M, Lacroix M (2016) Review of simplified pseudo-two-dimensional models of lithium-ion batteries. J Power Source 327:44–55. https://doi.org/10.1016/j.jpowsour.2016.07.036

    Article  CAS  Google Scholar 

  9. Zhao R, Liu J, Gu J (2015) The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery. Appl Energy 139:220–229. https://doi.org/10.1016/j.apenergy.2014.11.051

    Article  CAS  Google Scholar 

  10. Zheng HY, Tan L, Zhang L, Qu QT, Wan ZM, Wang Y, Shen M, Zheng HH (2015) Correlation between lithium deposition on graphite electrode and the capacity loss for LiFePO4/graphite cells. Electrochim Acta 173:323–330. https://doi.org/10.1016/j.electacta.2015.05.039

    Article  CAS  Google Scholar 

  11. Wang FM, Wang HY, Yu MH, Hsiao YJ, Tsai Y (2011) Differential pulse effects of solid electrolyte interface formation for improving performance on high-power lithium ion battery. J Power Source 196(23):10395–10400. https://doi.org/10.1016/j.jpowsour.2011.08.045

    Article  CAS  Google Scholar 

  12. Pinson MB, Bazant MZ (2013) Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction. J Electrochem Soc 160(2):A243–A250. https://doi.org/10.1149/2.044302jes

    Article  CAS  Google Scholar 

  13. Ramadass P, Haran B, Gomadam PM, White R, Popov BN (2004) Development of first principles capacity fade model for li-ion cells. J Electrochemical Soc 151(2):A196–A203. https://doi.org/10.1149/1.1634273

    Article  CAS  Google Scholar 

  14. Ning G, White RE, Popov BN (2006) A generalized cycle life model of rechargeable li-ion batteries. Electrochim Acta 51(10):2012–2022. https://doi.org/10.1016/j.electacta.2005.06.033

    Article  CAS  Google Scholar 

  15. Ploehn HJ, Ramadass P, White RE (2004) Solvent diffusion model for aging of lithium-ion battery cells. J Electrochemical Soc 151(3):A456–A462. https://doi.org/10.1149/1.1644601

    Article  CAS  Google Scholar 

  16. Xie YY, Li JY, Yuan C (2014) Multiphysics modeling of lithium ion battery capacity fading process with solid-electrolyte interphase growth by elementary reaction kinetics. J Power Source 248:172–179. https://doi.org/10.1016/j.jpowsour.2013.09.059

    Article  CAS  Google Scholar 

  17. Ashwin TR, Chung YM, Wang J (2016) Capacity fade modelling of lithium-ion battery under cyclic loading conditions. J Power Sources 328:586–598. https://doi.org/10.1016/j.jpowsour.2016.08.054

    Article  CAS  Google Scholar 

  18. Colclasure AM, Smith KA, Kee RJ (2011) Modeling detailed chemistry and transport for solid-electrolyte-interface (SEI) films in li–ion batteries. Electrochim Acta 58:33–43. https://doi.org/10.1016/j.electacta.2011.08.067

    Article  CAS  Google Scholar 

  19. Zhang Y, Song W, Lin S, Feng Z (2014) Multiparameters model of the initial SOC considering the relaxation effect. ACS Sustain Chem Eng 2(4):599–605. https://doi.org/10.1021/sc400430e

    Article  CAS  Google Scholar 

  20. Yan J, Xia B, Su Y, Zhou X, Zhang J, Zhang X (2008) Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries. Electrochim Acta 53(24):7069–7078. https://doi.org/10.1016/j.electacta.2008.05.032

    Article  CAS  Google Scholar 

  21. Lu P, Harris SJ (2011) Lithium transport within the solid electrolyte interphase. Electrochem Commun 13(10):1035–1037. https://doi.org/10.1016/j.elecom.2011.06.026

    Article  CAS  Google Scholar 

  22. Tang M, Lu S, Newman J (2012) Experimental and theoretical investigation of solid-electrolyte-interphase formation mechanisms on glassy carbon. J Electrochemical Soc 159(11):A1775–A1785. https://doi.org/10.1149/2.025211jes

    Article  CAS  Google Scholar 

  23. Safari M, Morcrette M, Teyssot A, Delacourt C (2009) Multimodal physics-based aging model for life prediction of li-ion batteries. J Electrochemical Soc 156(3):A145–A153. https://doi.org/10.1149/1.3043429

    Article  CAS  Google Scholar 

  24. Basu S, Hariharan KS, Kolake SM, Song T, Sohn DK, Yeo T (2016) Coupled electrochemical thermal modelling of a novel li-ion battery pack thermal management system. Appl Energy 181:1–13. https://doi.org/10.1016/j.apenergy.2016.08.049

    Article  CAS  Google Scholar 

  25. Ye Y, Shi Y, Tay AAO (2012) Electro-thermal cycle life model for lithium iron phosphate battery. J Power Sources 217:509–518. https://doi.org/10.1016/j.jpowsour.2012.06.055

    Article  CAS  Google Scholar 

  26. Wu W, Xiao XR, Huang XS (2012) The effect of battery design parameters on heat generation and utilization in a li-ion cell. Electrochim Acta 83:227–240. https://doi.org/10.1016/j.electacta.2012.07.081

    Article  CAS  Google Scholar 

  27. Valoen LO, Reimers JN (2005) Transport properties of LiPF6-based li-ion battery electrolytes. J Electrochemical Soc 152(5):A882–A891. https://doi.org/10.1149/1.1872737

    Article  CAS  Google Scholar 

  28. Bernardi D, Pawlikowski E, Newman J (1985) A general energy balance for battery systems. J Electrochemical Soc 132(1):5–12. https://doi.org/10.1149/1.2113792

    Article  CAS  Google Scholar 

  29. Xu M, Zhang ZQ, Wang X, Jia L, Yang LX (2015) A pseudo three-dimensional electrochemical-thermal model of a prismatic LiFePO4 battery during discharge process. Energy 80:303–317. https://doi.org/10.1016/j.energy.2014.11.073

    Article  CAS  Google Scholar 

  30. Safari M, Delacourt C (2011) Modeling of a commercial graphite/LiFePO4 cell. J Electrochem Soc 158(5):A562–A571. https://doi.org/10.1149/1.3567007

    Article  CAS  Google Scholar 

  31. Srinivasan V, Wang CY (2003) Analysis of electrochemical and thermal behavior of li-ion cells. J Electrochemical Soc 150(1):A98–A106. https://doi.org/10.1149/1.1526512

    Article  CAS  Google Scholar 

  32. Gerver RE, Meyers JP (2011) Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations. J Electrochemical Soc 158(7):A835–A843. https://doi.org/10.1149/1.3591799

    Article  CAS  Google Scholar 

  33. Wang J, Liu P, Hicks-Garner J, Sherman E, Soukiazian S, Verbrugge M, Tataria H, Musser J, Finamore P (2011) Cycle-life model for graphite-LiFePO4 cells. J Power Sources 196(8):3942–3948. https://doi.org/10.1016/j.jpowsour.2010.11.134

    Article  CAS  Google Scholar 

  34. Jalkanen K, Karppinen J, Skogström L, Laurila T, Nisula M, Vuorilehto K (2015) Cycle aging of commercial NMC/graphite pouch cells at different temperatures. Appl Energy 154:160–172. https://doi.org/10.1016/j.apenergy.2015.04.110

    Article  CAS  Google Scholar 

  35. Saw LH, Ye YH, Tay AAO (2013) Electrochemical-thermal analysis of 18650 lithium iron phosphate cell. Energy Conv Manag 75:162–174. https://doi.org/10.1016/j.enconman.2013.05.040

    Article  CAS  Google Scholar 

  36. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224. https://doi.org/10.1016/j.jpowsour.2012.02.038

    Article  CAS  Google Scholar 

  37. Borodin O, Smith GD, Fan P (2006) Molecular dynamics simulations of lithium alkyl carbonates. J Phys Chem B 110(45):22773–22779. https://doi.org/10.1021/jp0639142

    Article  CAS  Google Scholar 

  38. Safari M, Delacourt C (2011) Simulation-based analysis of aging phenomena in a commercial graphite/LiFePO4 cell. J Electrochemical Soc 158(12):A1436–A1447. https://doi.org/10.1149/2.103112jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding by the projects (No. 21676211 and No. 21606174) sponsored by the National Natural Science Foundation of China (NSFC). The authors also gratefully acknowledge funding by the China Postdoctoral Science Foundation (Grant 2016M592793).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhong Liu.

Electronic supplementary material

ESM 1

(DOCX 413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Ke, S., Lv, H. et al. A dynamic capacity fading model with thermal evolution considering variable electrode thickness for lithium-ion batteries. Ionics 24, 3439–3450 (2018). https://doi.org/10.1007/s11581-018-2476-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2476-8

Keywords

Navigation