Skip to main content
Log in

Zinc oxide functionalized MOF-5 for the adsorptive removal of Pb(II) metal ions and photocatalytic degradation of methylene blue dye in aqueous medium

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The composite of ZnO with MOF-5 (named ZnO@MOF-5) was synthesized through a solvothermal method for increasing the photocatalytic as well as adsorptive power of MOF-5. The synthesized compound was initially characterized through FT-IR, UV–visible, PXRD, TEM, and BET analyses. The efficacy of the synthesized compound toward the photocatalytic degradation of methylene blue and the adsorption of lead was analyzed through spectroscopic tools. The photocatalytic degradation study was conducted in direct sunlight irradiation and real-time monitoring of degradation was assessed through UV–visible spectroscopy in the presence and absence of H2O2. The photocatalytic degradation efficiency of ZnO@MOF-5 material has been greatly increased in the presence of sensitizer H2O2 molecules. The photocatalytic efficiency of MOF-5 was 97.47% in the presence of H2O2. The kinetic fitting models suggested that the degradation of methylene blue follows first-order kinetics. The efficiency of ZnO@MOF-5 towards the adsorptive removal of Pb(II) ions from aqueous solution was assessed using atomic absorption spectroscopy. The kinetic fitting studies for the adsorption process are unimolecular and follow pseudo-second-order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Bafana A, Devi SS, Chakrabarti T (2011) Azo dyes: past, present and the future. Environ Rev 19:350–371. https://doi.org/10.1139/a11-018

    Article  CAS  Google Scholar 

  2. Chung K-T, Cerniglia CE (1992) Mutagenicity of azo dyes: structure-activity relationships. Mutat Res Genet Toxicol 277:201–220. https://doi.org/10.1016/0165-1110(92)90044-A

    Article  CAS  Google Scholar 

  3. Chung K-T (1983) The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes. Mutat Res Genet Toxicol 114:269–281. https://doi.org/10.1016/0165-1110(83)90035-0

    Article  CAS  Google Scholar 

  4. Lachheb H, Puzenat E, Houas A et al (2002) Photocatalytic degradation of various types of dyes (alizarin S, crocein orange G, methyl red, Congo red, methylene blue) in water by UV-irradiated titania. Appl Catal B Environ 39:75–90. https://doi.org/10.1016/S0926-3373(02)00078-4

    Article  CAS  Google Scholar 

  5. Rego RM, Ajeya KV, Jung H-Y et al (2023) Nanoarchitectonics of bimetallic MOF@Lab-grade flexible filter papers: an approach towards real-time water decontamination and circular economy. Small 19:2302692. https://doi.org/10.1002/smll.202302692

    Article  CAS  Google Scholar 

  6. Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manage 93:154–168. https://doi.org/10.1016/j.jenvman.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  7. Castillo-Carvajal LC, Sanz-Martín JL, Barragán-Huerta BE (2014) Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review. Environ Sci Pollut Res 21:9578–9588. https://doi.org/10.1007/s11356-014-3036-z

    Article  CAS  Google Scholar 

  8. Ali I, Gupta VK (2006) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667. https://doi.org/10.1038/nprot.2006.370

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Chen H (2020) Catalytic ozonation for water and wastewater treatment: recent advances and perspective. Sci Total Environ 704:135249. https://doi.org/10.1016/j.scitotenv.2019.135249

    Article  CAS  PubMed  Google Scholar 

  10. Du Y, Lv X-T, Wu Q-Y et al (2017) Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination: a review. J Environ Sci 58:51–63. https://doi.org/10.1016/j.jes.2017.01.013

    Article  CAS  Google Scholar 

  11. Kumar S, Sharma SK, Kaushik RD, Purohit LP (2021) Chalcogen-doped zinc oxide nanoparticles for photocatalytic degradation of rhodamine B under the irradiation of ultraviolet light. Mater Today Chem 20:100464. https://doi.org/10.1016/j.mtchem.2021.100464

    Article  CAS  Google Scholar 

  12. Kumar S, Kaushik RD, Purohit LP (2021) Hetro-nanostructured Se-ZnO sustained with RGO nanosheets for enhanced photocatalytic degradation of p-chlorophenol, p-nitrophenol and methylene blue. Sep Purif Technol 275:119219. https://doi.org/10.1016/j.seppur.2021.119219

    Article  CAS  Google Scholar 

  13. Kumar S, Kaushik RD, Upadhyay GK, Purohit LP (2021) rGO-ZnO nanocomposites as an efficient photocatalyst for degradation of 4-BP and DEP using high-temperature refluxing method in in-situ condition. J Hazard Mater 406:124300. https://doi.org/10.1016/j.jhazmat.2020.124300

    Article  CAS  PubMed  Google Scholar 

  14. Kumar S, Kaushik RD, Purohit LP (2022) ZnO-CdO nanocomposites incorporated with graphene oxide nanosheets for efficient photocatalytic degradation of bisphenol A, thymol blue and ciprofloxacin. J Hazard Mater 424:127332. https://doi.org/10.1016/j.jhazmat.2021.127332

    Article  CAS  Google Scholar 

  15. Kumar S, Kaushik RD, Purohit LP (2023) RGO supported ZnO/SnO2 Z-scheme heterojunctions with enriched ROS production towards enhanced photocatalytic mineralization of phenolic compounds and antibiotics at low temperature. J Colloid Interface Sci 632:196–215. https://doi.org/10.1016/j.jcis.2022.11.040

    Article  CAS  PubMed  Google Scholar 

  16. Usman M, Mendiratta S, Lu K-L (2017) Semiconductor metal–organic frameworks: future low-bandgap materials. Adv Mater 29:1605071. https://doi.org/10.1002/adma.201605071

    Article  CAS  Google Scholar 

  17. Ben T, Ren H, Ma S et al (2009) Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chemie Int Ed 48:9457–9460. https://doi.org/10.1002/anie.200904637

    Article  CAS  Google Scholar 

  18. Chen L, Luque R, Li Y (2017) Controllable design of tunable nanostructures inside metal–organic frameworks. Chem Soc Rev 46:4614–4630. https://doi.org/10.1039/C6CS00537C

    Article  CAS  PubMed  Google Scholar 

  19. Collet G, Lathion T, Besnard C et al (2018) On-demand degradation of metal–organic framework based on photocleavable dianthracene-based ligand. J Am Chem Soc 140:10820–10828. https://doi.org/10.1021/jacs.8b05047

    Article  CAS  PubMed  Google Scholar 

  20. Prasannakumaran Nair Chandrika Kumari P, Asadevi H, ThekkuVeedu S, Raghunandan R (2023) Hydrogen bond mediated turn-on sensor: ultra-sensitive and label-free barium-MOF for probing malathion an organophosphate pesticide. J Mol Struct 1286:135542. https://doi.org/10.1016/j.molstruc.2023.135542

    Article  CAS  Google Scholar 

  21. Preethi PC, Harisankar A, Soumya Mol US, Raghunandan R (2022) Synthesis of oxydiacetate functionalized strontium coordination polymer through gel diffusion technique: a new dual luminescent chemosensor for the detection of Copper(II) ions and Cr(VI) oxyanions in aqueous medium. Polyhedron 223:115974. https://doi.org/10.1016/j.poly.2022.115974

    Article  CAS  Google Scholar 

  22. Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6:e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jungreis E, Nechama M (1986) A simple direct estimation of ultramicroquantities of lead in drinking water using sodium rhodizonate. Microchem J 34:219–221. https://doi.org/10.1016/0026-265X(86)90036-6

    Article  CAS  Google Scholar 

  24. Barwick M, Maher W (2003) Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Mar Environ Res 56:471–502. https://doi.org/10.1016/S0141-1136(03)00028-X

    Article  CAS  PubMed  Google Scholar 

  25. Palaniappan PLRM, Krishnakumar N, Vadivelu M (2009) Bioaccumulation of lead and the influence of chelating agents in Catla catla fingerlings. Environ Chem Lett 7:51–54. https://doi.org/10.1007/s10311-008-0134-5

    Article  CAS  Google Scholar 

  26. Matović V, Buha A, Ðukić-Ćosić D, Bulat Z (2015) Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 78:130–140. https://doi.org/10.1016/j.fct.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  27. Puttlitz KJ, Galyon GT (2006) Impact of the ROHS Directive on high-performance electronic systems BT - lead-free electronic solders: a special Issue of the Journal of Materials Science: Materials in Electronics. In: Subramanian KN (ed) Lead-Free Elctronic Solders. Springer US, Boston, pp 347–365

    Chapter  Google Scholar 

  28. Xiang H, Min X, Tang C-J et al (2022) Recent advances in membrane filtration for heavy metal removal from wastewater: a mini review. J Water Process Eng 49:103023. https://doi.org/10.1016/j.jwpe.2022.103023

    Article  Google Scholar 

  29. Charerntanyarak L (1999) Heavy metals removal by chemical coagulation and precipitation. Water Sci Technol 39:135–138. https://doi.org/10.1016/S0273-1223(99)00304-2

    Article  CAS  Google Scholar 

  30. Bang Mo K (1984) Membrane-based solvent extraction for selective removal and recovery of metals. J Memb Sci 21:5–19. https://doi.org/10.1016/S0376-7388(00)83060-4

    Article  Google Scholar 

  31. Bashir A, Malik LA, Ahad S et al (2019) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett 17:729–754. https://doi.org/10.1007/s10311-018-00828-y

    Article  CAS  Google Scholar 

  32. Jabbari V, Veleta JM, Zarei-Chaleshtori M et al (2016) Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chem Eng J 304:774–783. https://doi.org/10.1016/j.cej.2016.06.034

    Article  CAS  Google Scholar 

  33. Asadevi H, Prasannakumaran Nair Chandrika Kumari P, Khadar SA et al (2023) Dual-functional manganese-doped ZnO-MOF hybrid material with enhanced hydrolytic stability: a fluorescent photoinduced electron transfer sensor for the ultraselective detection of acetic acid and chromium (VI). Inorg Chem 62:17766–17782. https://doi.org/10.1021/acs.inorgchem.3c02507

    Article  CAS  PubMed  Google Scholar 

  34. Kumari PPNC, Asadevi H, Vindhya PS et al (2023) Development of a Cu/ZnO@ZIF-8 nanocomposite as a pH-responsive drug delivery vehicle for the sustained release of doxorubicin in human lung cancer cell lines. J Drug Deliv Sci Technol 105147. https://doi.org/10.1016/j.jddst.2023.105147

  35. Asadevi H, Prasannakumaran Nair Chandrika Kumari P, PadmavatiAmma R et al (2022) ZnO@MOF-5 as a fluorescence “turn-off” sensor for ultrasensitive detection as well as probing of copper(II) ions. ACS Omega 7:13031–13041. https://doi.org/10.1021/acsomega.2c00416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vindhya PS, Jeyasingh T, Kavitha VT (2019) Dielectric properties of zinc oxide nanoparticles using annona muricata leaf. AIP Conf Proc 2082:1–6. https://doi.org/10.1063/1.5093888

    Article  CAS  Google Scholar 

  37. Gupta NK, Bae J, Kim S, Kim KS (2021) Fabrication of Zn-MOF/ZnO nanocomposites for room temperature H2S removal: adsorption, regeneration, and mechanism. Chemosphere 274:129789. https://doi.org/10.1016/j.chemosphere.2021.129789

    Article  CAS  PubMed  Google Scholar 

  38. Song J, Zhang B, Jiang T et al (2011) Synthesis of cyclic carbonates and dimethyl carbonate using CO2 as a building block catalyzed by MOF-5/KI and MOF-5/KI/K2CO 3. Front Chem China 6:21–30. https://doi.org/10.1007/s11458-011-0225-x

    Article  Google Scholar 

  39. Müller M, Turner S, Lebedev OI et al (2011) Au@MOF-5 and Au/MOx@MOF-5 (M = Zn, Ti; X = 1, 2): preparation and microstructural characterisation. Eur J Inorg Chem 5:1876–1887. https://doi.org/10.1002/ejic.201001297

    Article  CAS  Google Scholar 

  40. A H, C PP, Mary YS, et al (2023) Spectral, thermal, structural and DFT studies of new luminescent heterobimetallic MOF of lead and sodium based on diglycolic acid ligand having unusual coordination environment for photodegradation and antibacterial applications. J Mol Struct 1285:135472. https://doi.org/10.1016/j.molstruc.2023.135472

    Article  CAS  Google Scholar 

  41. Lajevardi A, Tavakkoli Yaraki M, Masjedi A et al (2019) Green synthesis of MOF@Ag nanocomposites for catalytic reduction of methylene blue. J Mol Liq 276:371–378. https://doi.org/10.1016/j.molliq.2018.12.002

    Article  CAS  Google Scholar 

  42. Al-Zaban MI, Mahmoud MA, AlHarbi MA (2021) Catalytic degradation of methylene blue using silver nanoparticles synthesized by honey. Saudi J Biol Sci 28:2007–2013. https://doi.org/10.1016/j.sjbs.2021.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hariganesh S, Vadivel S, Maruthamani D et al (2020) Facile large-scale synthesis of CuCr2O4/CuO nanocomposite using MOF route for photocatalytic degradation of methylene blue and tetracycline under visible light. Appl Organomet Chem 34:e5365. https://doi.org/10.1002/aoc.5365

    Article  CAS  Google Scholar 

  44. Wu C-H, Chern J-M (2006) Kinetics of photocatalytic decomposition of methylene blue. Ind Eng Chem Res 45:6450–6457

    Article  CAS  Google Scholar 

  45. Comparelli R, Cozzoli PD, Curri ML et al (2004) Photocatalytic degradation of methyl-red by immobilised nanoparticles of TiO2 and ZnO. Water Sci Technol 49:183–188

    Article  CAS  PubMed  Google Scholar 

  46. Yousefi R, Jamali-Sheini F, Cheraghizade M et al (2015) Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles. Mater Sci Semicond Process 32:152–159. https://doi.org/10.1016/j.mssp.2015.01.013

    Article  CAS  Google Scholar 

  47. Lv J, Kako T, Li Z et al (2010) Synthesis and photocatalytic activities of NaNbO3 rods modified by In2O3 nanoparticles. J Phys Chem C 114:6157–6162. https://doi.org/10.1021/jp906550t

    Article  CAS  Google Scholar 

  48. Tang T, Li C, He W et al (2022) Preparation of MOF-derived C-ZnO/PVDF composites membrane for the degradation of methylene blue under UV-light irradiation. J Alloys Compd 894:162559. https://doi.org/10.1016/j.jallcom.2021.162559

    Article  CAS  Google Scholar 

  49. Thi QV, Tamboli MS, Thanh Hoai Ta Q et al (2020) A nanostructured MOF/reduced graphene oxide hybrid for enhanced photocatalytic efficiency under solar light. Mater Sci Eng B 261:114678. https://doi.org/10.1016/j.mseb.2020.114678

    Article  Google Scholar 

  50. Zhou Y, Yu J, Jiang X (2017) Removing lead ions from aqueous solutions by the thiosemicarbazide grafted multi-walled carbon nanotubes. Water Sci Technol 76:302–310. https://doi.org/10.2166/wst.2017.198

    Article  CAS  PubMed  Google Scholar 

  51. Zhang J, Xiong Z, Li C, Wu C (2016) Exploring a thiol-functionalized MOF for elimination of lead and cadmium from aqueous solution. J Mol Liq 221:43–50. https://doi.org/10.1016/j.molliq.2016.05.054

    Article  CAS  Google Scholar 

  52. Rivera JM, Rincón S, Ben Youssef C, Zepeda A (2016) Highly Efficient adsorption of aqueous Pb(II) with mesoporous metal-organic framework-5: an equilibrium and kinetic study. J Nanomater 2016:8095737. https://doi.org/10.1155/2016/8095737

    Article  CAS  Google Scholar 

  53. Yari M, Norouzi M, Mahvi AH et al (2016) Removal of Pb(II) ion from aqueous solution by graphene oxide and functionalized graphene oxide-thiol: effect of cysteamine concentration on the bonding constant. Desalin Water Treat 57:11195–11210. https://doi.org/10.1080/19443994.2015.1043953

    Article  CAS  Google Scholar 

  54. Zhang Y, Yan L, Xu W et al (2014) Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide. J Mol Liq 191:177–182. https://doi.org/10.1016/j.molliq.2013.12.015

    Article  CAS  Google Scholar 

  55. Wang S-G, Gong W-X, Liu X-W et al (2007) Removal of lead (II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep Purif Technol 58:17–23

    Article  CAS  Google Scholar 

  56. Anbia M, Karami S (2015) Desulfurization of gasoline using novel mesoporous carbon adsorbents. J Nanostructure Chem 5:131–137. https://doi.org/10.1007/s40097-014-0144-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Harisankar A: Investigation: Methodology, Roles/Writing - original draft Preethi P C: review & editing Sreeja TG: review & editing Rejani P: Formal analysis, review & editing Midhun Murali: review & editing Resmi Raghunandan: Project administration, Conceptualization, Supervision, review & editing

Corresponding author

Correspondence to Resmi Raghunandan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1585 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harisankar, A., Preethi, P.C., Sreeja, T.G. et al. Zinc oxide functionalized MOF-5 for the adsorptive removal of Pb(II) metal ions and photocatalytic degradation of methylene blue dye in aqueous medium. Ionics 30, 2313–2331 (2024). https://doi.org/10.1007/s11581-024-05414-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05414-7

Keywords

Navigation