Skip to main content
Log in

Preparation and effects of calcining temperature and pH on the photocatalytic activity of BiVO4 microcrystal for degrading methylene blue

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

BiVO4 photocatalysts were synthesized by a polyacrylamide gel method. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of monoclinic BiVO4. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations showed that BiVO4 had the morphology of sphere-like particles and smooth surface. Ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS) data demonstrated that the band gaps of BiVO4 particles varied in the range of 2.34 to 2.49 eV. Photoluminescence (PL) spectra revealed that BiVO4 obtained at a lower calcining temperature had the weaker emission intensity and the lower recombination rate of photogenerated carriers. The influences of different calcination temperatures and pH values on the photocatalytic activities were evaluated by degrading methylene blue (MB) solution under visible light irradiation. BiVO4 prepared by calcining xerogel at 500 ℃ possessed the highest photocatalytic activity as high as 96.542% after 180 min. The photocatalytic efficiency of BiVO4 particles under alkaline conditions was higher than that under acidic conditions. Trapping experiments verified that singlet oxygen (1O2), superoxide radical (·O2), and hydroxyl radical (·OH) were the principal active species in the photocatalytic reactions. The as-obtained BiVO4 photocatalysts exhibit great potential in pollutant removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Guo Q, Zhou C, Ma Z, Yang X (2019) Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 31:1901997–1902022

    Article  CAS  Google Scholar 

  2. Wannakan K, Khansamrit K, Senasu T, Nanan S (2023) Ultrasound-assisted synthesis of a ZnO/BiVO4 S-scheme heterojunction photocatalyst for degradation of the reactive red 141 dye and oxytetracycline antibiotic. ACS Omega 8:4835–4852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xiong J, Song P, Di J, Li H, Liu Z (2019) Freestanding ultrathin bismuth-based materials for diversified photocatalytic applications. J Mater Chem A 7:25203–25226

    Article  CAS  Google Scholar 

  4. Patil SS, Lee J, Kim T, Nagappagari LR, Lee K (2022) Controlled synthesis and structural modulation to boost intrinsic photocatalytic activity of BiVO4. CrystEngComm 24:2686–2696

    Article  CAS  Google Scholar 

  5. Liaqat M, Khalid NR, Tahir MB, Znaidia S, Alrobei H, Alzaid M (2023) Visible light induced photocatalytic activity of MnO2/BiVO4 for the degradation of organic dye and tetracycline. Ceram Int 49:10455–10461

    Article  CAS  Google Scholar 

  6. Manikantan K, Shanmugasundaram K, Thirunavukkarasu P, Dhanakodi K (2022) Visible light-enhanced photocatalytic dye degradation and hydrogen evolution performance of BiVO4 thin films prepared at various annealing temperatures. J Mater Sci Mater Electron 33:14605–14626

    Article  CAS  Google Scholar 

  7. Enneffati M, Rasheed M, Louati B, Guidara K, Barillé R (2019) Morphology, UV-visible and ellipsometric studies of sodium lithium orthovanadate. Opt Quantum Electron 51:299–317

    Article  Google Scholar 

  8. Kiama N, Ponchio C (2020) Photoelectrocatalytic performance improvement of BiVO4 thin film fabrication via effecting of calcination temperature strategy. Surf Coat Technol 383:125257–125262

    Article  CAS  Google Scholar 

  9. Liu Y, Ma J, Liu Z, Dai C, Song Z, Sun Y, Fang J, Zhao J (2010) Low-temperature synthesis of BiVO4 crystallites in molten salt medium and their UV-vis absorption. Ceram Int 36:2073–2077

    Article  CAS  Google Scholar 

  10. Kumar M, Elqahtani ZM, Alrowaili ZA, Al-Buriahi MS, Kebaili I, Boukhris I, Vaish R (2023) Photocatalytic BiVO4-cement composites for dye degradation. J Electron Mater 52:4672–4685

    Article  CAS  Google Scholar 

  11. Reza KM, Kurny ASW, Gulshan F (2015) Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci 7:1569–1578

    Article  Google Scholar 

  12. Kaur H, Kumar S, Verma NK, Singh P (2018) Role of pH on the photocatalytic activity of TiO2 tailored by W/T mole ratio. J Mater Sci Mater Electron 29:16120–16135

    Article  CAS  Google Scholar 

  13. Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121:11459–11467

    Article  CAS  Google Scholar 

  14. Tokunaga S, Kato H, Kudo A (2001) Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem Mater 13:4624–4628

    Article  CAS  Google Scholar 

  15. Saputera WH, Amri AF, Mukti RR, Suendo V, Devianto H, Sasongko D (2021) Photocatalytic degradation of palm oil mill effluent (POME) waste using BiVO4 based catalysts. Molecules 26:6225–6239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Phuruangrat A, Wannapop S, Sakhon T, Kuntalue B, Thongtem T, Thongtem S (2023) Characterization and photocatalytic properties of BiVO4 synthesized by combustion method. J Mol Struct 1274:134420–134427

    Article  CAS  Google Scholar 

  17. Wang Y, Sun X, Xian T, Liu G, Yang H (2021) Photocatalytic purification of simulated dye wastewater in different pH environments by using BaTiO3/Bi2WO6 heterojunction photocatalysts. Opt Mater 113:110853–110865

    Article  CAS  Google Scholar 

  18. Abbasi S, Hasanpour M (2016) The effect of pH on the photocatalytic degradation of methyl orange using decorated ZnO nanoparticles with SnO2 nanoparticles. J Mater Sci Mater Electron 28:1307–1314

    Article  Google Scholar 

  19. Yang Y, Tian C (2011) Photocatalytic degradation of methylene blue and phenol on Fe-doped sulfated titania. Res Chem Intermed 38:693–703

    Article  Google Scholar 

  20. Abo El-Yazeed WS, El-Hakam SA, Salah AA, Ibrahim AA (2021) Fabrication and characterization of reduced graphene-BiVO4 nanocomposites for enhancing visible light photocatalytic and antibacterial activity. J Photochem Photobiol A Chem 417:113362–113372

    Article  CAS  Google Scholar 

  21. Wu M, Jing Q, Feng X, Chen L (2018) BiVO4 microstructures with various morphologies: synthesis and characterization. Appl Surf Sci 427:525–532

    Article  CAS  Google Scholar 

  22. Ke D, Peng T, Ma L, Cai P, Jiang P (2008) Photocatalytic water splitting for O2 production under visible-light irradiation on BiVO4 nanoparticles in different sacrificial reagent solutions. Appl Catal A Gen 350:111–117

    Article  CAS  Google Scholar 

  23. Zhang L, Dai Z, Zheng G, Yao Z, Mu J (2018) Superior visible light photocatalytic performance of reticular BiVO4 synthesized via a modified sol-gel method. RSC Adv 8:10654–10664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang M, Liu Q, Luan H (2011) Preparation, characterization and photocatalytic preoperty of BiVO4 photocatalyst by sol-gel method. Appl Mech Mater 99–100:1307–1311

    Google Scholar 

  25. Pookmanee P, Kojinok S, Puntharod R, Sangsrichan S, Phanichphant S (2013) Preparation and characterization of BiVO4 powder by the sol-gel method. Ferroelectrics 456:45–54

    Article  CAS  Google Scholar 

  26. Nikam S, Joshi S (2016) Irreversible phase transition in BiVO4 nanostructures synthesized by a polyol method and enhancement in photo degradation of methylene blue. RSC Adv 6:107463–107474

    Article  CAS  Google Scholar 

  27. Liu Y, Dai H, Deng J, Zhang L, Au CT (2012) Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation. Nanoscale 4:2317–2325

    Article  CAS  PubMed  Google Scholar 

  28. Ke D, Peng T, Ma L, Cai P, Dai K (2009) Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light. Inorg Chem 48:4685–4691

    Article  CAS  PubMed  Google Scholar 

  29. Liu J, Wang H, Wang S, Yan H (2003) Hydrothermal preparation of BiVO4 powders. Mater Sci Eng B 104:36–39

    Article  Google Scholar 

  30. Baral B, Parida K (2020) 040/110 Facet isotype heterojunctions with monoclinic scheelite BiVO4. Inorg Chem 59:10328–10342

    Article  CAS  PubMed  Google Scholar 

  31. Jiang H, Dai H, Meng X, Zhang L, Deng J, Liu Y, Au CT (2012) Hydrothermal fabrication and visible-light-driven photocatalytic properties of bismuth vanadate with multiple morphologies and/or porous structures for methyl orange degradation. J Environ Sci-China 24:449–457

    Article  CAS  PubMed  Google Scholar 

  32. Reddy DA, Kim Y, KaJ R, Gopannagari M, Rangappa AP, Praveen Kumar D, Sasikala Devi AA, Murali D, Ahn HS, Kim TK (2021) Boosting water oxidation performance of BiVO4 photoanode by vertically stacked NiO nanosheets coupled with atomically dispersed iridium sites. ACS Appl Energy Mater 4:11353–11366

    Article  CAS  Google Scholar 

  33. Jia Q, Iwashina K, Kudo A (2012) Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. Proc Natl Acad Sci USA 109:11564–11569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu W, Lai SY, Dai H, Wang S, Sun H, Au CT (2007) Oxidative dehydrogenation of n-butane over mesoporous VOx /SBA-15 catalysts. Catal Lett 113:147–154

    Article  CAS  Google Scholar 

  35. Hunge YM, Uchida A, Tominaga Y, Fujii Y, Yadav AA, Kang S-W, Suzuki N, Shitanda I, Kondo T, Itagaki M, Yuasa M, Gosavi S, Fujishima A, Terashima C (2021) Visible light-assisted photocatalysis using spherical-shaped BiVO4 photocatalyst. Catalysts 11:460–470

    Article  CAS  Google Scholar 

  36. Wang G, Ling Y, Lu X, Qian F, Tong Y, Zhang J, Lordi V, Rocha Leao C, Li Y (2013) Computational and photoelectrochemical study of hydrogenated bismuth vanadate. J Phys Chem C 117:10957–10964

    Article  CAS  Google Scholar 

  37. Wang G, Shan L, Wu Z, Dong L (2016) Enhanced photocatalytic properties of molybdenum-doped BiVO4 prepared by sol-gel method. Rare Met 36:129–133

    Article  Google Scholar 

  38. Senasu T, Youngme S, Hemavibool K, Nanan S (2021) Sunlight-driven photodegradation of oxytetracycline antibiotic by BiVO4 photocatalyst. J Solid State Chem 297:122088–122097

    Article  CAS  Google Scholar 

  39. Yu J, Zhang Y, Kudo A (2009) Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process. J Solid State Chem 182:223–228

    Article  CAS  Google Scholar 

  40. Xie B, Zhang H, Cai P, Qiu R, Xiong Y (2006) Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Chemosphere 63:956–963

    Article  CAS  PubMed  Google Scholar 

  41. Cooper JK, Gul S, Toma FM, Chen L, Glans PA, Guo J, Ager JW, Yano J, Sharp ID (2014) Electronic structure of monoclinic BiVO4. Chem Mater 26:5365–5373

    Article  CAS  Google Scholar 

  42. Chang W, Li M, Chung TW, Lin YS, Huang C (2011) Toluene decomposition using silver vanadate/SBA-15 photocatalysts: DRIFTS study of surface chemistry and recyclability. Appl Catal A Gen 407:224–230

    Article  CAS  Google Scholar 

  43. Pan G, Huang C, Peng P, Yang TCK (2011) Nano-scaled silver vanadates loaded on mesoporous silica: characterization and photocatalytic activity. Catal Today 164:377–383

    Article  CAS  Google Scholar 

  44. Xu L, Wang X, Xu M, Liu B, Wang X, Wang S, Sun T (2020) Preparation of zinc tungstate nanomaterial and its sonocatalytic degradation of meloxicam as a novel sonocatalyst in aqueous solution. Ultrason Sonochem 61:104815–104823

    Article  CAS  PubMed  Google Scholar 

  45. Gao Q, Sun G, Ling R, Cai Y, Wang A (2022) Construction and characterization of CoWO4/g-C3N4 composites for efficient sonocatalytic degradation of Rhodamine B. J Mater Sci Mater Electron 33:25589–25602

    Article  CAS  Google Scholar 

  46. Zhu X, Zhou Q, Xia Y, Wang J, Chen H, Xu Q, Liu J, Feng W, Chen S (2021) Preparation and characterization of Cu-doped TiO2 nanomaterials with anatase/rutile/brookite triphasic structure and their photocatalytic activity. J Mater Sci Mater Electron 16:21511–21524

    Article  Google Scholar 

  47. Alam U, Khan A, Ali D, Bahnemann D, Muneer M (2018) Comparative photocatalytic activity of sol-gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Adv 8:17582–17594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Park Y, Na Y, Pradhan D, Min B-K, Sohn Y (2014) Adsorption and UV/Visible photocatalytic performance of BiOI for methyl orange, Rhodamine B and methylene blue: Ag and Ti-loading effects. CrystEngComm 16:3155–3167

    Article  CAS  Google Scholar 

  49. Shah JH, Fiaz M, Athar M, Ali J, Rubab M, Mehmood R, Jamil SUU, Djellabi R (2019) Facile synthesis of N/B-double-doped Mn2O3 and WO3 nanoparticles for dye degradation under visible light. Environ Technol 41:2372–2381

    Article  PubMed  Google Scholar 

  50. Zou R, Chen Z, Zhong L, Yang W, Li T, Gan J, Yang Y, Chen Z, Lai H, Li X, Liu C, Admassie S, Iwuoha EI, Lu J, Peng X (2023) Nanocellulose-assisted molecularly engineering of nitrogen deficient graphitic carbon nitride for selective biomass photo-oxidation. Adv Funct Mater 29:2301311–2301318

    Article  Google Scholar 

  51. Wang Y, Lin L, Dong Y, Liu X (2022) Facile synthesis of MOF-808/AgI Z-scheme heterojunction with improved photocatalytic performance for the degradation of tetracycline hydrochloride under simulated sunlight. New J Chem 34:16584–16592

    Article  Google Scholar 

  52. Wetchakun N, Chainet S, Phanichphant S, Wetchakun K (2015) Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites. Ceram Int 41:5999–6004

    Article  CAS  Google Scholar 

  53. Zhang Y, Yang Z, Li R, Geng H, Dong C (2015) Investigation of fine chalk dust particles’ chemical compositions and toxicities on alveolar macrophages in vitro. Chemosphere 120:500–506

    Article  CAS  PubMed  Google Scholar 

  54. Lei H, Zhang H, Zou Y, Dong X, Jia Y, Wang F (2019) Synergetic photocatalysis/piezocatalysis of bismuth oxybromide for degradation of organic pollutants. J Alloys Compd 809:151840–151847

    Article  CAS  Google Scholar 

  55. Tezcanli-Güyer G, Ince NH (2004) Individual and combined effects of ultrasound, ozone and UV irradiation: a case study with textile dyes. Ultrasonics 42:603–609

    Article  PubMed  Google Scholar 

  56. Zhu X, Wang J, Yang D, Liu J, He L, Tang M, Feng W, Wu X (2021) Fabrication, characterization and high photocatalytic activity of Ag-ZnO heterojunctions under UV-visible light. RSC Adv 11:27257–27266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Chongqing Three Gorges University, the Talent Introduction Project (09826501), the Science and Technology Research Program of Chongqing Education Commission of China (KJQN202001225), Project (YB2020C0402) supported by Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area.

Author information

Authors and Affiliations

Authors

Contributions

Yang Cai and Guangzhuang Sun designed this study. Yang Cai, Xiaoyu Yang, Yuxuan Li and Runze Ling performed material preparation and data collection. Yang Cai, Xiaoyu Yang and Guangzhuang Sun analyzed the data. Yang Cai and Guangzhuang Sun wrote the first draft of the manuscript and all authors revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guangzhuang Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Yang, X., Li, Y. et al. Preparation and effects of calcining temperature and pH on the photocatalytic activity of BiVO4 microcrystal for degrading methylene blue. Ionics 30, 2333–2344 (2024). https://doi.org/10.1007/s11581-024-05407-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05407-6

Keywords

Navigation