Skip to main content
Log in

Conductive Ni3(HITP)2 nanofilm with asymmetrical morphology prepared by gas–liquid interface self-assembly for glucose sensing

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Ni3(HITP)2 (HITP: 2,3,6,7,10,11-hexaiminotriphenylene) is a very typical 2D electrically conductive metal–organic framework (EC-MOF) material with great promising as active materials in electronic devices. Gas–liquid interface self-assembly is a common method of processing free-standing thin films for this EC-MOF. Owing to the different contact environment during growth process, Ni3(HITP)2 film prepared by gas–liquid interface method has different morphology for up-side surface exposed to air and down-side surface infiltrated in solution. However, the asymmetrical morphology of Ni3(HITP)2 film and its influence on sensing performance have never been implemented. In this work, gas–liquid interface self-assembly method is used to obtain an asymmetrical Ni3(HITP)2 nanofilm in surface morphology with a flat up-side surface and an island-like down-side surface. The surface morphology of as-prepared film has a remarkable influence on the glucose sensing property. The island-like structure for down-side surface film exhibits more excellent glucose sensing performance because of its abundant crystal defect which play an important role in enhancing glucose catalytic oxidation capacity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Li H, Li L, Lin RB, Zhou W, Zhang Z, Xiang S, Chen B (2019) Porous metal-organic frameworks for gas storage and separation: status and challenges. EnergyChem 1(1):100006

    Article  Google Scholar 

  2. Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou HC (2018) Recent advances in gas storage and separation using metal-organic frameworks. Mater Today 21(2):108–121

    Article  CAS  Google Scholar 

  3. Tang J, Liang Z, Qin H, Liu X, Zhai B, Su Z, Liu Q, Lei H, Liu K, Zhao C, Cao R, Fang Y (2022) Large-area free-standing metalloporphyrin-based covalent organic framework films by liquid-air interfacial polymerization for oxygen electrocatalysis. Angew Chem Int Ed 62(1):202214449

    Article  Google Scholar 

  4. Pascanu V, González Miera G, Inge AK, Martín-Matute B (2019) Metal-organic frameworks as catalysts for organic synthesis: a critical perspective. J Am Chem Soc 141(18):7223–7234

    Article  CAS  PubMed  Google Scholar 

  5. Liu J, Sun W, Zha X, Sun G, Wang Y (2023) A novel hollow nanostructure with charge collection function based on bimetallic MOFs: ameliorating the catalytic reaction of norepinephrine bitartrate in serum. Colloids Surf A: Physicochem Eng Asp 677:132419

    Article  CAS  Google Scholar 

  6. Lawson HD, Walton SP, Chan C (2021) Metal-organic frameworks for drug delivery: a design perspective. ACS Appl Mater Interfaces 13(6):7004–7020

    Article  CAS  PubMed  Google Scholar 

  7. Hassan MH, Vyas C, Grieve B, Bartolo P (2021) Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing. Sensors 21(14):4672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Daud AD, Lim HN, Ibrahim I, Endot NA, Gowthaman NSK, Jiang ZT, Cordova KE (2022) An effective metal-organic framework-based electrochemical non-enzymatic glucose sensor. J Electroanal Chem 921(39):116676

    Article  CAS  Google Scholar 

  9. Li HY, Zhao SN, Zang SQ, Li J (2020) Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem Soc Rev 49(17):6364–6401

    Article  CAS  PubMed  Google Scholar 

  10. Shi Y, Zou Y, Khan MS, Zhang M, Yan J, Zheng X, Wang W, Xie Z (2023) Metal-organic framework-derived photoelectrochemical sensors: structural design and biosensing technology. J Mater Chem C 11(11):3692–3709

    Article  CAS  Google Scholar 

  11. Wu M, Wang L, Xu F, Ma G (2022) Preparation of Ni-MOF superstructure-reduced graphene oxide composite for enhanced electrochemical sensing of acetaminophen. Ionics 28(12):5571–5580

    Article  CAS  Google Scholar 

  12. Du J, Chai J, Li Q, Zhang W, Tang B (2022) Application of two-dimensional layered Mo-MOF@ppy with high valency molybdenum in lithium-ion batteries. Colloids Surf A: Physicochem Eng Asp 632(41):127810

    Article  CAS  Google Scholar 

  13. Yao M, Otake KI, Koganezawa T, Ogasawar M, Asakawa H, Tsujimoto M, Xue Z, Li Y, Flanders NC, Wang P, Gu Y, Honma T, Kawaguchi S, Kubota Y, Kitagawa S (2023) Growth mechanisms and anisotropic softness-dependent conductivity of orientation-controllable metal-organic framework nanofilms. Proc Natl Acad Sci U S A 120(40):2305125120

  14. Dou JH, Arguilla MQ, Luo Y, Li J, Zhang W, Sun L, Mancuso JL, Yang L, Chen T, Parent LR, Skorupskii G, Libretto NJ, Sun C, Yang MC, Dip PV, Brignole EJ, Miller JT, Kong J, Hendon CH, Sun J, Dincă M (2020) atomically precise single-crystal structures of electrically conducting 2D metal-organic frameworks. Nat Mater 20(2):222–228

    Article  PubMed  Google Scholar 

  15. Zhang S, Li L, Lu Y, Zhang J, Liu D, Hao D, Zhang X, Tian L, Xiong L, Huang J (2022) Chemical sensors based on ionically conductive metal-organic frameworks for selective cadaverine detection. J Mater Chem C 10(14):5497–5504

    Article  CAS  Google Scholar 

  16. Li F, Liu L, Liu T, Zhang M (2022) Correction to: Ni-MOF nanocomposites decorated by au nanoparticles: an electrochemical sensor for detection of uric acid. Ionics 28(11):5257

    Article  CAS  Google Scholar 

  17. Kulachenkov N, Haar Q, Shipilovskikh S, Yankin A, Pierson JF, Nominé A, Milichko VA (2021) MOF-based sustainable memory devices. Adv Funct Mater 32(5):2107949

    Article  Google Scholar 

  18. Zhu L, Zhang H, Lu Q, Wang Y, Deng Z, Hu Y, Lou Z, Cui Q, Hou Y, Teng F (2018) Synthesis of ultrathin two-dimensional organic-inorganic hybrid perovskite nanosheets for polymer field-effect transistors. J Mater Chem C 6(15):3945–3950

    Article  CAS  Google Scholar 

  19. Yan Q, Kanatzidis MG (2021) High-performance thermoelectrics and challenges for practical devices. Nat Mater 21(5):503–513

    Article  PubMed  Google Scholar 

  20. Cao Y, Wu N, Yang F, Yang M, Zhang T, Guo H, Yang W (2022) Interpenetrating network structures assembled by “string of candied haws”-like ppy nanotube-interweaved NiCo-MOF-74 polyhedrons for high-performance supercapacitors. Colloids Surf A: Physicochem Eng Asp 646:128954

    Article  CAS  Google Scholar 

  21. Sheberla D, Bachman JC, Elias JS, Sun CJ, Shao-Horn Y, Dincă M (2016) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16(2):220–224

    Article  PubMed  Google Scholar 

  22. Zhao W, Chen T, Wang W, Jin B, Peng J, Bi S, Jiang M, Liu S, Zhao Q, Huang W (2020) Conductive Ni3(HITP)2 MOFs thin films for flexible transparent supercapacitors with high rate capability. Sci Bull 65(21):1803–1811

    Article  CAS  Google Scholar 

  23. Zhao W, Peng J, Wang W, Jin B, Chen T, Liu S, Zhao Q, Huang W (2019) Interlayer hydrogen-bonded metal porphyrin frameworks/mxene hybrid film with high capacitance for flexible all-solid-state supercapacitors. Small 15(18):e1901351

    Article  PubMed  Google Scholar 

  24. Zhang B, Song S, Li W, Zheng L, Ma X (2021) Asymmetric supercapacitors with high energy density and high specific capacitance based on Ni-Co-Mn multiphase metal structure MOF. Ionics 27(8):3553–3566

    Article  CAS  Google Scholar 

  25. Lin Y, Li WH, Wen Y, Wang GE, Ye XL, Xu G (2021) Layer-by-layer growth of preferred-oriented MOF thin film on nanowire array for high-performance chemiresistive sensing. Angew Chem Int Ed 60(49):25758–25761

    Article  CAS  Google Scholar 

  26. Song X, Liu J, Zhang T, Chen L (2020) 2D conductive metal-organic frameworks for electronics and spintronics. Sci China Chem 63(10):1391–1401

    Article  CAS  Google Scholar 

  27. Liu Y, Wei Y, Liu M, Bai Y, Wang X, Shang S, Chen J, Liu Y (2020) Electrochemical synthesis of large area two-dimensional metal-organic framework films on copper anodes. Angew Chem Int Ed 60(6):2887–2891

    Article  Google Scholar 

  28. Zhang N, Jin Y, Zhang Q, Liu J, Zhang Y, Wang H (2021) direct fabrication of electrochromic Ni-MOF 74 film on ITO with high-stable performance. Ionics 27(8):3655–3662

    Article  CAS  Google Scholar 

  29. Jia M, Su J, Su P, Li W (2021) Vapor-assisted self-conversion of basic carbonates in metal-organic frameworks. Nanoscale 13(9):5069–5076

    Article  CAS  PubMed  Google Scholar 

  30. Kim KJ, Culp JT, Ohodnicki PR, Thallapally PK, Tao J (2021) Synthesis of high-quality Mg-MOF-74 thin films via vapor-assisted crystallization. ACS Appl Mater Interfaces 13(29):35223–35231

    Article  CAS  PubMed  Google Scholar 

  31. Li WH, Ding K, Tian HR, Yao MS, Nath B, Deng WH, Wang Y, Xu G (2017) Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv Funct Mater 27(27):1702067

    Article  Google Scholar 

  32. Miner EM, Gul S, Ricke ND, Pastor E, Yano J, Yachandra VK, Van Voorhis T, Dincă M (2017) Mechanistic evidence for ligand-centered electrocatalytic oxygen reduction with the conductive MOF Ni3(hexaiminotriphenylene)2. ACS Catal 7(11):7726–7731

    Article  CAS  Google Scholar 

  33. Zhao X, Wang Q, Yu X, Lee Y, Liu HG (2017) Hierarchical composite microstructures fabricated at the air/liquid interface through multilevel self-assembly of block copolymers. Colloids Surf A: Physicochem Eng Asp 516:171–180

    Article  CAS  Google Scholar 

  34. Liu K, Wang L, Dong R (2020) Two-dimensional conjugated polymer films via liquid-interface-assisted synthesis toward organic electronic devices. J Mater Chem C 8(31):10696–10718

    Article  CAS  Google Scholar 

  35. Ohata T, Tachimoto K, Takeno KJ, Nomoto A, Watanabe T, Hirosawa I, Makiura R (2023) Influence of the solvent on the assembly of Ni3(hexaiminotriphenylene)2 metal-organic framework nanosheets at the air/liquid interface. B Chem Soc Jpn 96(3):274–282

    Article  CAS  Google Scholar 

  36. Zasadzinski JA, Viswanathan R, Madsen L, Garnaes J, Schwartz DK (2023) Langmuir-Blodgett films. Science 263(5154):1726–1733

    Article  Google Scholar 

  37. Oliveira ON, Caseli L, Ariga K (2022) The past and the future of Langmuir and LangmuirBlodgett films. Chem Rev 122(6):6459–6513

    Article  PubMed  Google Scholar 

  38. Chen X, Dong J, Chi K, Wang L, Xiao F, Wang S, Zhao Y, Liu Y (2021) Electrically conductive metal-organic framework thin film-based on-chip micro-biosensor: a platform to unravel surface morphology-dependent biosensing. Adv Funct Mater 31(51):2102855

    Article  CAS  Google Scholar 

  39. Kresse G, Hafner J (2000) First-principles study of the adsorption of atomic H on Ni (111), (100) and (110). Surf Sci 459(3):287–302

    Article  CAS  Google Scholar 

  40. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  41. Kresse G, Furthmüller J (1994) efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  Google Scholar 

  42. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phy Rev Lett 78(7):1396–1396

    Article  CAS  Google Scholar 

  44. Wu G, Huang J, Zang Y, Jun J, Xu G (2017) Porous field effect transistors based on a semiconductive metal organic framework. J Am Chem Soc 139(4):1360–1363

    Article  CAS  PubMed  Google Scholar 

  45. Yang HC, Wu MB, Hou J, Darling SB, Xu ZK (2018) Nanofilms directly formed on macro-porous substrates for molecular and ionic sieving. J Mater Chem A 6(7):2908–2913

    Article  CAS  Google Scholar 

  46. Lee YS (2007) Self-assembly and nanotechnology: a force balance approach. Online ISBN:9780470292525. https://doi.org/10.1002/9780470292525

  47. Wu MB, Fan XL, Yang HC, Yang J, Zhu MM, Ren KF, Ji J, Xu ZK (2019) Ultrafast formation of pyrogallol/polyethyleneimine nanofilms for aqueous and organic nanofiltration. J Membrane Sci 570–571:270–277

    Article  Google Scholar 

  48. Sheberla D, Sun L, Blood-Forsythe MA, Er S, Wade CR, Brozek CK, Aspuru-Guzik A, Dincă M (2014) High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J Am Chem Soc 136(25):8859–8862

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Qiu T, Jiang F, Amzil S, Wang Y, Fu H, Yang C, Fang Z, Huang J, Dai G (2021) Spindle-like Ni3(HITP)2 MOFs: synthesis and Li+ storage mechanism. Appl Surf Sci 556:149818

    Article  CAS  Google Scholar 

  50. Lee T, Kim JO, Park C, Kim H, Kim M, Park H, Kim I, Ko J, Pak K, Choi SQ, Kim ID, Park S (2022) Large-area synthesis of ultrathin, flexible, and transparent conductive metal-organic framework thin films via a microfluidic-based solution shearing process. Adv Mater 34(12):e2107696

    Article  PubMed  Google Scholar 

  51. Tee SY, Teng CP, Ye E (2017) Metal nanostructures for non-enzymatic glucose sensing. Mater Sci Eng C Mater Biol Appl 70(Pt 2):1018–1030

    Article  CAS  PubMed  Google Scholar 

  52. Li H, Zhang L, Mao Y, Wen C, Zhao P (2019) A simple electrochemical route to access amorphous Co-Ni hydroxide for non-enzymatic glucose sensing. Nanoscale Res Lett 14(1):135

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhu H, Li L, Zhou W, Shao Z, Chen X (2016) Advances in non-enzymatic glucose sensors based on metal oxides. J Mater Chem B 4(46):7333–7349

    Article  CAS  PubMed  Google Scholar 

  54. Wang F, Chen X, Chen L, Yang J, Wang Q (2019) High-performance non-enzymatic glucose sensor by hierarchical flower-like nickel(II)-based MOF/carbon nanotubes composite. Mater Sci Eng C Mater Biol Appl 96:41–50

    Article  CAS  PubMed  Google Scholar 

  55. Sehit E, Altintas Z (2020) Significance of nanomaterials in electrochemical glucose sensors: an updated review (2016–2020). Biosens Bioelectron 159:112165

    Article  CAS  PubMed  Google Scholar 

  56. Chen Y, Tian Y, Zhu P, Du L, Chen W, Wu C (2020) Electrochemically activated conductive Ni-based MOFs for non-enzymatic sensors toward long-term glucose monitoring. Front Chem 8:602752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alam AU, Qin Y, Howlader MMR, Hu NX, Deen MJ (2018) Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and Β-cyclodextrin. Sens Actuators, B Chem 254:896–909

    Article  CAS  Google Scholar 

  58. Qiao Y, Liu Q, Lu S, Chen G, Gao S, Lu W, Sun X (2020) High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst. J Mater Chem B 8(25):5411–5415

    Article  CAS  PubMed  Google Scholar 

  59. Zhao Z, Huang Y, Huang Z, Mei H, Xie Y, Long D, Zhu F, Gong W (2022) Nonenzymetic glucose sensitive device based on morchella shaped nickel-copper layered double hydroxide. Appl Surf Sci 597(12):153658

    Article  CAS  Google Scholar 

  60. Liu X, Yang C, Yang W, Lin J, Liang C, Zhao X (2021) One-pot synthesis of uniform Cu nanowires and their enhanced non-enzymatic glucose sensor performance. J Mater Sci 56(9):5520–5531

    Article  CAS  Google Scholar 

  61. He G, Wang L (2018) One-step preparation of ultra-thin copper oxide nanowire arrays/copper wire electrode for non-enzymatic glucose sensor. Ionics 24(10):3167–3175

    Article  CAS  Google Scholar 

  62. Zhang X, Xu Y, Ye B (2018) An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J Alloys and Compd 767:651–656

    Article  CAS  Google Scholar 

  63. Lin KC, Yang CY, Chen SM (2015) Fabrication of a nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with platinum and silver hybrid composite. Int J Electrochem Sci 10(5):3726–3737

    Article  CAS  Google Scholar 

  64. Niu X, Lan M, Zhao H, Chen C (2013) Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal Chem 85(7):3561–3569

    Article  CAS  PubMed  Google Scholar 

  65. Gao X, Feng W, Zhu Z, Wu Z, Li S, Kan S, Qiu X, Guo A, Chen W, Yin K (2021) Rapid fabrication of superhydrophilic micro/nanostructured nickel foam toward high-performance glucose sensor. Adv Mater Interfaces 8(7):2002133

    Article  CAS  Google Scholar 

  66. Liang X, Sun Q, Liu Z, Pu H, Yin M, Yu J, Yan W, Fa H, Yin W (2023) Performance comparison of non-enzymatic electrochemical glucose sensor with bimetallic NiMo-MOF and CoMo-MOF. Ionics 29(8):3393–3405

    Article  CAS  Google Scholar 

  67. Liu XH, Yang YW, Liu XM, Hao Q, Wang LM, Sun B, Wu J, Wang D (2020) Confined synthesis of oriented two-dimensional Ni3(hexaiminotriphenylene)2 films for electrocatalytic oxygen evolution reaction. Langmuir 36(26):7528–7532

    Article  CAS  PubMed  Google Scholar 

  68. Huang Y, Yang H, Xiong T, Adekoya D, Qiu W, Wang Z, Zhang S, Balogun MS (2020) Adsorption energy engineering of nickel oxide hybrid nanosheets for high areal capacity flexible lithium-ion batteries. Energy Storage Mater 25:41–51

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.: 22205121), Ningxia Natural Science Foundation Project (No.: 2022AAC03303, 2023AAC03354, and 2022AAC03307), Construction of First-Class Disciplines (Pedagogy Discipline) in Ningxia Higher Education Institutions (No. NXYLXK2021B10), First-class Discipline Construction Project (Chemistry) in Higher Education Institutions of Ningxia (Ningxia Normal University), and Engineering Research Center of Liupanshan (No.: HGZD22-19).

Author information

Authors and Affiliations

Authors

Contributions

L-aC: conceptualization, resources, funding acquisition, and writing—review and editing. MW: methodology, investigation, formal analysis, and original manuscript writing. XG: investigation and formal analysis. DW: validation and investigation. LC: resources, funding acquisition, and project administration. JG: formal analysis, funding acquisition, and supervision.

Corresponding author

Correspondence to Lin-an Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4792 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, La., Wei, M., Guo, X. et al. Conductive Ni3(HITP)2 nanofilm with asymmetrical morphology prepared by gas–liquid interface self-assembly for glucose sensing. Ionics 30, 2375–2385 (2024). https://doi.org/10.1007/s11581-024-05406-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05406-7

Keywords

Navigation