Skip to main content
Log in

Fabrication of supercapacitor electrode material using carbon derived from waste printer cartridge

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Transforming recyclable materials into a suitable product is an important area of research nowadays. This report demonstrates that carbon material derived from waste printer cartridges can be exploited to fabricate electrochemical cells—particularly supercapacitors (SCs). SCs are electrochemical energy storage devices currently attracting much attention in the research community due to their salient features, such as cost-effectiveness, extended cycle stability, and durability. Here, we report the results of thoroughly examining the effects of acidic, basic, and neutral aqueous electrolytes on printer waste carbon electrode material in SC efficiency. In our work, the waste carbon collected from used printer cartridges shows a specific capacitance of 178.4 F/g with energy and power density of 24.77 Wh/kg and 999.68 W/kg, respectively, at 0.5 A/g current density in acidic (1 M H2SO4) electrolyte medium. Moreover, it exhibited very promising capacitance of 135.04 F/g and 87.04 F/g in basic (1 M LiOH) and neutral (1 M NaCl) electrolyte medium, respectively, at 0.8 A/g current density with considerably better cycle stability. In an acidic medium, printer waste carbon drives a DC motor for 1 min with a three-cell series arrangement. The properties of that waste carbon (extracted from the cartridges) are similar to high-rate activated carbon available commercially.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Zou Y, Hu X, Ma H, Li S E (2015) Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. J Power Sources 273:793–803. https://doi.org/10.1016/j.jpowsour.2014.09.146

  2. Tie S F, Tan C W (2013) A review of energy sources and energy management system in electric vehicles. Renewable and sustainable energy reviews 20:82–102. https://doi.org/10.1016/j.rser.2012.11.077

  3. Wang J, Liu P, Hicks-Garner J, Sherman E, Soukiazian S, Verbrugge M, Tataria H, Musser J, Finamore P (2011) Cycle-Life Model for Graphite-LiFePO4 Cells. J Power Sources 196(8):3942–3948. https://doi.org/10.1016/j.jpowsour.2010.11.134

  4. Kötz R, Carlen M (2000) Principles and Applications of Electrochemical Capacitors. Electrochimica Acta 45(15–16):2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6.

  5. Dixon J, Nakashima I, Arcos EF, Ortuzar M (2010) Electric vehicle using a combination of ultracapacitors and ZEBRA battery. IEEE Trans Industr Electron 57(3):943–949. https://doi.org/10.1109/TIE.2009.2027920

    Article  Google Scholar 

  6. Bullard GL, Sierra-Alcazar HB, Lee HL, Morris JL (1989) Operating principles of the ultracapacitor. IEEE Trans Magn 25(1):102–106. https://doi.org/10.1109/20.22515

    Article  Google Scholar 

  7. Carbon materials for the electrochemical storage of energy in capacitors - ScienceDirect. https://www.sciencedirect.com/science/article/pii/S0008622300001834. Accessed 2023–04–12.

  8. Down MP, Rowley-Neale SJ, Smith GC, Banks CE (2018) Fabrication of graphene oxide supercapacitor devices. ACS Appl Energy Mater 1(2):707–714. https://doi.org/10.1021/acsaem.7b00164

    Article  CAS  Google Scholar 

  9. Zhao B, Liu P, Jiang Y, Pan D, Tao H, Song J, Fang T, Xu W (2012) Supercapacitor performances of thermally reduced graphene oxide. J Power Sources 198:423–427. https://doi.org/10.1016/j.jpowsour.2011.09.074

    Article  CAS  Google Scholar 

  10. Frackowiak E, Metenier K, Bertagna V, Beguin F (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 77(15):2421–2423. https://doi.org/10.1063/1.1290146

    Article  CAS  Google Scholar 

  11. Zhang C, Wang H, Gao Y, Wan C (2022) Cellulose-derived carbon aerogels: a novel porous platform for supercapacitor electrodes. Mater Des 219:110778. https://doi.org/10.1016/j.matdes.2022.110778

    Article  CAS  Google Scholar 

  12. Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui LF, Cui Y (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci U.S.A. 106(51):21490–21494. https://doi.org/10.1073/pnas.0908858106

  13. Shen H, Liu E, Xiang X, Huang Z, Tian Y, Wu Y, Wu Z, Xie H (2012) A novel activated carbon for supercapacitors. Mater Res Bull 47(3):662–666. https://doi.org/10.1016/j.materresbull.2011.12.028

    Article  CAS  Google Scholar 

  14. Zhi M, Yang F, Meng F, Li M, Manivannan A, Wu N (2014) Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires. ACS Sustainable Chem Eng 2(7):1592–1598. https://doi.org/10.1021/sc500336h

    Article  CAS  Google Scholar 

  15. Lobato-Peralta DR, Amaro R, Arias DM, Cuentas-Gallegos AK, Jaramillo-Quintero OA, Sebastian PJ, Okoye PU (2021) Activated carbon from wasp hive for aqueous electrolyte supercapacitor application. J Electroanal Chem 901:115777. https://doi.org/10.1016/j.jelechem.2021.115777

    Article  CAS  Google Scholar 

  16. Idrees M, Ahmed S, Mohammed Z, Korivi NS, Rangari V (2020) 3D printed supercapacitor using porous carbon derived from packaging waste. Addit Manuf 36:101525. https://doi.org/10.1016/j.addma.2020.101525

    Article  CAS  Google Scholar 

  17. Chiu Y-H, Lin L-Y (2019) Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors. J Taiwan Inst Chem Eng 101:177–185. https://doi.org/10.1016/j.jtice.2019.04.050

    Article  CAS  Google Scholar 

  18. Teo E Y L, Muniandy L, Ng E-P, Adam F, Mohamed A R, Jose R, Chong K F (2016) High Surface Area Activated Carbon from Rice Husk as a High Performance Supercapacitor Electrode. Electrochimica Acta 192:110–119. https://doi.org/10.1016/j.electacta.2016.01.140

    Article  CAS  Google Scholar 

  19. El-Hout SI, Attia SY, Mohamed SG, Abdelbasir SM (2022) From waste to value-added products: evaluation of activated carbon generated from leather waste for supercapacitor applications. J Environ Manage 304:114222. https://doi.org/10.1016/j.jenvman.2021.114222

    Article  CAS  PubMed  Google Scholar 

  20. Jung H, Kang J, Nam I, Bae S (2020) Graphitic porous carbon derived from waste coffee sludge for energy storage. Materials 13(18):3972. https://doi.org/10.3390/ma13183972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu GQ (2010) Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources 195(3):912–918. https://doi.org/10.1016/j.jpowsour.2009.08.048

    Article  CAS  Google Scholar 

  22. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44(21):7484–7539. https://doi.org/10.1039/C5CS00303B

    Article  CAS  PubMed  Google Scholar 

  23. Jiang D, Jin Z, Henderson D, Wu J (2012) Solvent effect on the pore-size dependence of an organic electrolyte supercapacitor. J Phys Chem Lett 3(13):1727–1731. https://doi.org/10.1021/jz3004624

    Article  CAS  PubMed  Google Scholar 

  24. Peng X, Liu H, Yin Q, Wu J, Chen P, Zhang G, Liu G, Wu C, Xie Y (2016) A zwitterionic gel electrolyte FOR EFFICIENT SOLID-STATE SUPERCAPACITors. Nat Commun 7(1):11782. https://doi.org/10.1038/ncomms11782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lehtimäki S, Railanmaa A, Keskinen J, Kujala M, Tuukkanen S, Lupo D (2017) Performance, stability and operation voltage optimization of screen-printed aqueous supercapacitors. Sci Rep 7(1):46001. https://doi.org/10.1038/srep46001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zang X, Shen C, Sanghadasa M, Lin L (2019) High-voltage supercapacitors based on aqueous electrolytes. ChemElectroChem 6(4):976–988. https://doi.org/10.1002/celc.201801225

    Article  CAS  Google Scholar 

  27. Ramachandran R, Wang F (2018) Electrochemical capacitor performance: influence of aqueous electrolytes. In Supercapacitors - theoretical and practical solutions; Liudvinavičius, L., Ed.; InTech, https://doi.org/10.5772/intechopen.70694

  28. Torcha\la K, Kierzek K, Machnikowski J (2012) Capacitance behavior of KOH activated mesocarbon microbeads in different aqueous electrolytes. Electrochimica Acta 86:260–267. https://doi.org/10.1016/j.electacta.2012.07.062

    Article  CAS  Google Scholar 

  29. Volkov A G, Paula S, Deamer D W (1997) Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochemistry and bioenergetics 42(2):153–160. https://doi.org/10.1016/S0302-4598(96)05097-0

  30. Child Labour: Global Estimates 2020, trends and the road forward; Report; 2021. http://www.ilo.org/ipec/Informationresources/WCMS_797515/lang--en/index.htm. Accessed 2024–01–05.

  31. Xue M, Lu W, Chen C, Tan Y, Li B, Zhang C (2019) Optimized synthesis of banana peel derived porous carbon and its application in lithium sulfur batteries. Mater Res Bull 112:269–280. https://doi.org/10.1016/j.materresbull.2018.12.035

    Article  CAS  Google Scholar 

  32. Huang W, Zhang H, Huang Y, Wang W, Wei S (2011) Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon 49(3):838–843. https://doi.org/10.1016/j.carbon.2010.10.025

    Article  CAS  Google Scholar 

  33. Romanos J, Beckner M, Rash T, Firlej L, Kuchta B, Yu P, Suppes G, Wexler C, Pfeifer P (2011) Nanospace engineering of KOH activated carbon. Nanotechnology 23(1):015401. https://doi.org/10.1088/0957-4484/23/1/015401

    Article  CAS  PubMed  Google Scholar 

  34. Otowa T, Tanibata R, Itoh M (1993) Production and adsorption characteristics of MAXSORB: high-surface-area active carbon. Gas Separation & Purification 7(4):241–245. https://doi.org/10.1016/0950-4214(93)80024-Q

    Article  CAS  Google Scholar 

  35. Park SH, McClain S, Tian ZR, Suib SL, Karwacki C (1997) Surface and bulk measurements of metals deposited on activated carbon. Chem Mater 9(1):176–183. https://doi.org/10.1021/cm9602712

    Article  CAS  Google Scholar 

  36. Mohan AN, Manoj B (2012) Synthesis and characterization of carbon nanospheres from hydrocarbon soot. Int J Electrochem Sci 7(10):9537–9549. https://doi.org/10.1016/S1452-3981(23)16217-1

    Article  CAS  Google Scholar 

  37. Liu Y, Liu X, Dong W, Zhang L, Kong Q, Wang W (2017) Efficient adsorption of sulfamethazine onto modified activated carbon: a plausible adsorption mechanism. Scientific Reports 7(1):12437. https://doi.org/10.1038/s41598-017-12805-6

  38. Terzyk A P (2001) The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (Paracetamol) in Vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral PH. Colloids and Surfaces A: Physicochemical and Engineering Aspects 177(1):23–45. https://doi.org/10.1016/S0927-7757(00)00594-X

  39. Danmaliki G I, Saleh T A (2017) Effects of bimetallic Ce/Fe nanoparticles on the desulfurization of thiophenes using activated carbon. Chem Eng J 307:914–927. https://doi.org/10.1016/j.cej.2016.08.143.

  40. Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. WJNSE 02(03):154–160. https://doi.org/10.4236/wjnse.2012.23020

    Article  CAS  Google Scholar 

  41. Viswanathan A, Shetty AN (2018) Single step synthesis of RGO, copper oxide and polyaniline nanocomposites for high energy supercapacitors. Electrochim Acta 289:204–217. https://doi.org/10.1016/j.electacta.2018.09.033

    Article  CAS  Google Scholar 

  42. Bazan A, Nowicki P, Półrolniczak P, Pietrzak R (2016) Thermal analysis of activated carbon obtained from residue after supercritical extraction of hops. J Therm Anal Calorim 125(3):1199–1204. https://doi.org/10.1007/s10973-016-5419-5

    Article  CAS  Google Scholar 

  43. Sing K (2001) The use of nitrogen adsorption for the characterisation of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 187:3–9. https://doi.org/10.1016/S0927-7757(01)00612-4

  44. https://doi.org/10.1016/S0021-9797(03)00139-5 | Elsevier Enhanced Reader. https://doi.org/10.1016/S0021-9797(03)00139-5.

  45. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101(1):109–116. https://doi.org/10.1016/S0378-7753(01)00707-8

    Article  CAS  Google Scholar 

  46. Castro JP, Nobre JRC, Napoli A, Bianchi ML, Moulin JC, Chiou B-S, Williams TG, Wood DF, Avena-Bustillos RJ, Orts WJ, Tonoli GHD (2019) Massaranduba sawdust: a potential source of charcoal and activated carbon. Polymers 11(8):1276. https://doi.org/10.3390/polym11081276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Low cost, catalyst free, high performance supercapacitors based on porous nano carbon derived from agriculture waste | Elsevier Enhanced Reader. https://doi.org/10.1016/j.est.2020.101829.

  48. Yu J, Li Y, Qu Y, Shen H, Yu W, Kwon Y-U, Zhao Y (2019) Controllably fabricating carbon microspheres with hierarchical porous structure for supercapacitors. Ionics 25(7):3341–3349. https://doi.org/10.1007/s11581-019-02885-x

    Article  CAS  Google Scholar 

  49. Onodera H, Tsubota T (2022) Fabrication of NaCl aqueous electrolyte electric double layer capacitor as practical device and dependence of cell performance on pore structure of activated carbon; preprint; In Review, https://doi.org/10.21203/rs.3.rs-2160366/v1

  50. Maity S, Bm N, Kella T, Shee D, Das PP, Mal SS (2021) Activated carbon- supported Vanado-nickelate (IV) based hybrid materials for energy application. Journal of Energy Storage 40:102727. https://doi.org/10.1016/j.est.2021.102727

    Article  Google Scholar 

  51. Vijayakumar M, Santhosh R, Adduru J, Rao TN, Karthik M (2018) Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading. Carbon 140:465–476. https://doi.org/10.1016/j.carbon.2018.08.052

    Article  CAS  Google Scholar 

  52. De Levie R (1965) The influence of surface roughness of solid electrodes on electrochemical measurements. Electrochim Acta 10(2):113–130. https://doi.org/10.1016/0013-4686(65)87012-8

    Article  Google Scholar 

  53. Brus D, Skrabalova L, Herrmann E, Olenius T, Travnickova T, Merikanto J (2016) Temperature-dependent diffusion coefficient of H<Sub>2</Sub>SO<Sub>4</Sub> in air: laboratory measurements using laminar flow technique; preprint; Gases/Laboratory Studies/Troposphere/Physics (physical properties and processes), 10.5194/acp-2016-398.

  54. Littauer EL, Tsai KC (1979) Observations of the diffusion coefficient of the hydroxyl ion in lithium hydroxide solutions. Electrochim Acta 24(4):351–355. https://doi.org/10.1016/0013-4686(79)87018-8

    Article  CAS  Google Scholar 

  55. Wang T, Hu R, Yang Z, Chen Y-F, Li Y, Zhou C-B (2023) Reactive-infiltration instability in a hele-shaw cell influenced by initial aperture and flow rate. Phys Rev Fluids 8(4):043901. https://doi.org/10.1103/PhysRevFluids.8.043901

    Article  Google Scholar 

  56. Graphene Double-Layer Capacitor with ac Line-Filtering Performance | Science. https://doi.org/10.1126/science.1194372. Accessed 2023–06–13.

  57. Gupta RK, Candler J, Palchoudhury S, Ramasamy K, Gupta BK (2015) Flexible and high performance supercapacitors based on NiCo2O4 for wide temperature range applications. Sci Rep 5(1):15265. https://doi.org/10.1038/srep15265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Isacfranklin M, Yuvakkumar R, Ravi G, Thambidurai M, Nguyen HD, Velauthapillai D (2023) SmNiO3/SWCNT perovskite composite for hybrid supercapacitor. J Energy Storage 68:107786. https://doi.org/10.1016/j.est.2023.107786

    Article  Google Scholar 

  59. Pankaj Chavhan MP, Ganguly S (2017) Charge transport in activated carbon electrodes: the behaviour of three electrolytes vis-à-vis their specific conductance. Ionics 23(8):2037–2044. https://doi.org/10.1007/s11581-017-2048-3

    Article  CAS  Google Scholar 

  60. Sankar KV, Kalai Selvan R (2015) Improved electrochemical performances of reduced graphene oxide based supercapacitor using redox additive electrolyte. Carbon 90:260–273. https://doi.org/10.1016/j.carbon.2015.04.023

    Article  CAS  Google Scholar 

  61. Ahirrao D J, Tambat S, Pandit A B, Jha N (2019) Sweet‐lime‐peels‐derived activated‐carbon‐based electrode for highly efficient supercapacitor and flow‐through water desalination. ChemistrySelect 4(9):2610–2625. https://doi.org/10.1002/slct.201803417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.R.B. and S.M. thank the University Grant Commission (UGC) and the National Institute of Technology Karnataka (NITK), Surathkal, for financial assistance in carrying out the research. All authors acknowledge the support received from the Central Research Facility (CRF) at NITK and the Ministry of Education (MoE).

Author information

Authors and Affiliations

Authors

Contributions

B.R.B.: visualization, investigation, writing original draft, preparation, software. S.M.: data curation. P.R.C.: data curation. D.S.: writing—reviewing and editing. P.P.D.: supervision, validation, reviewing, and editing. S.S.M.: conceptualization, methodology, writing—reviewing and editing, supervision.

Corresponding authors

Correspondence to Partha Pratim Das or Sib Sankar Mal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 311 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biradar, B.R., Maity, S., Chandewar, P.R. et al. Fabrication of supercapacitor electrode material using carbon derived from waste printer cartridge. Ionics 30, 2273–2285 (2024). https://doi.org/10.1007/s11581-024-05402-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05402-x

Keywords

Navigation